

Ressources naturelles
Canada

Co-processing biocrudes from lignocellulosic biomass through hydrocracking: The importance of biocrude pre-treatment

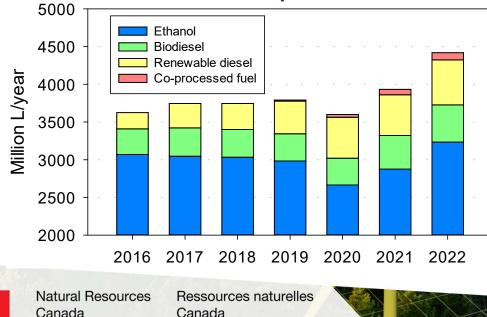
Anton Alvarez-Majmutov, Sandeep Badoga, and Jinwen Chen CanmetENERGY Devon, Natural Resources Canada

tcbiomass2024, Itasca, IL, September 10-12, 2024

The Canadian context

Canada'sRenewableFuelRegulationsrequire that gasoline anddiesel fuels have renewable content

•5% in gasoline


•2% in diesel

•No requirement yet for aviation fuels

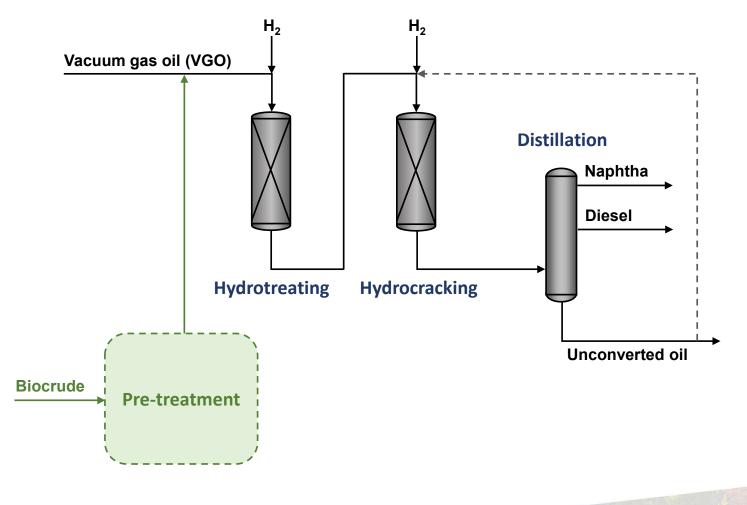
Co-processing refers to the refining of biogenic feedstocks together with petroleum in an existing refinery

In Canada, co-processed fuels are produced in British ColumbiaMade from lipid feedstocks

Biofuel consumption in Canada*

Biocrudes from thermochemical conversion of biomass are promising co-processing feedstocks

•Little commercial experience


•Technically challenging to refine

*Source: Biofuels in Canada 2023, Navius Research Inc.

Co-processing biocrudes through hydrocracking

Drop-in locations in a refinery

- Fluid catalytic cracking (FCC) units
- Diesel hydrotreaters
- Hydrocracking
 - Relatively unexplored pathway
 - Potential to make not only gasoline and diesel, but also aviation fuel
 - Good for handling aromatic feedstocks

Canada

3

าลสล้

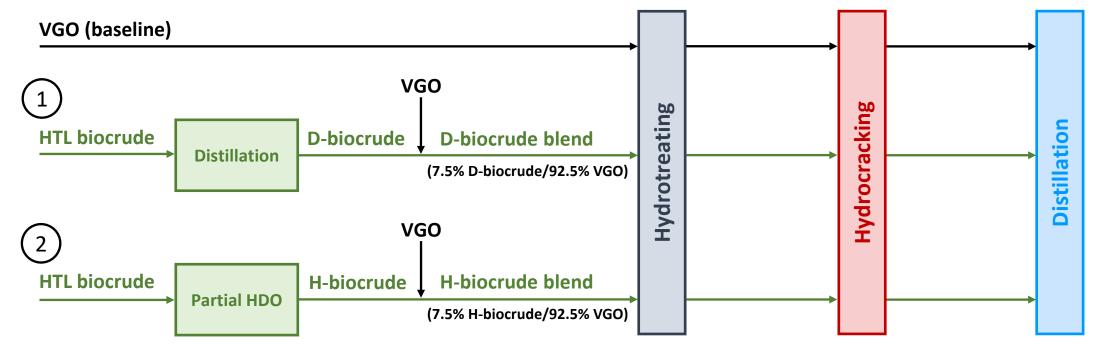
Why biocrude pre-treatment?

Challenges with biocrudes

(focus on hydrothermal liquefaction - HTL)

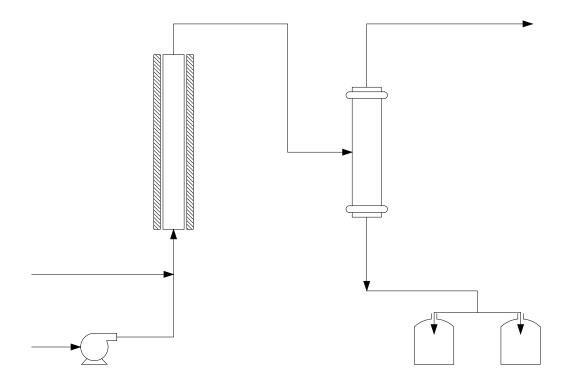
- Do not mix well with petroleum
 - Form aggregates that lead to plugging issues
- Thermally unstable
 - Tend to polymerize at refinery process temperatures (>300°C)
- Affect refinery catalyst performance
 - Poisoning/deactivation

HTL biocrude/VGO blends


Pre-treatment options

- Fractionation (distillation)
 - Removes water and high-boiling material
 - Biocrude distillate shows better miscibility in oil and is more stable
- Partial hydrodeoxygenation (HDO)
 - Reduces oxygen content and stabilizes the biocrude
 - Improves miscibility in oil

Experimental plan


Goal: investigate the co-processing characteristics of HTL biocrude treated by distillation and HDO in the hydrocracking process

Feed materials

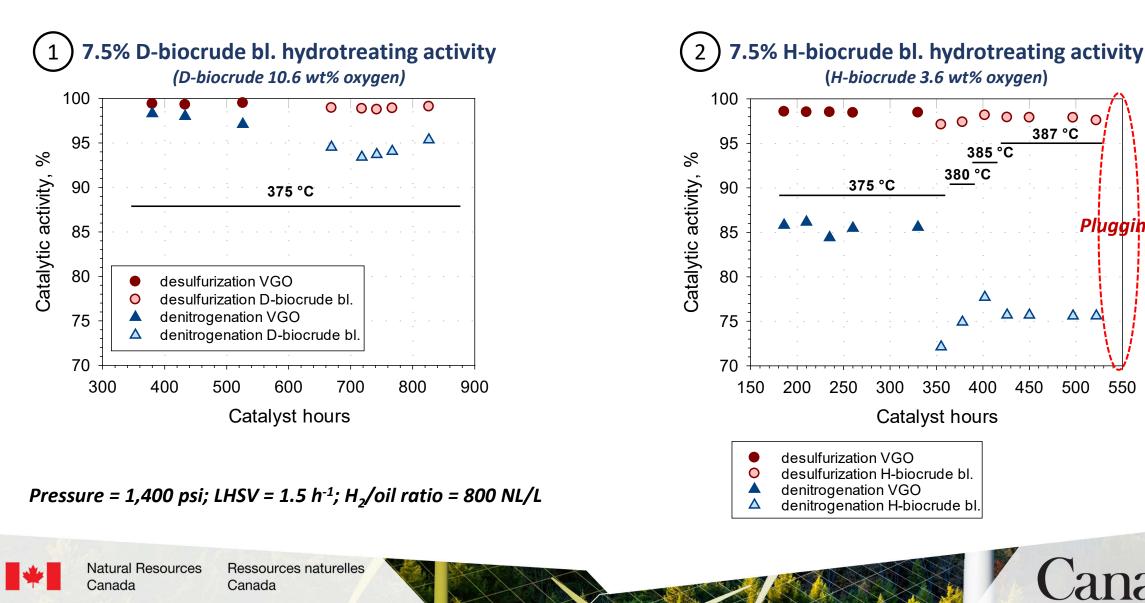
- Petroleum feed: VGO (343-525°C) from Canadian bitumen
- Biogenic feed: HTL biocrude from a mix of spruce and pine wood

Co-processing pilot plant testing

Catalysts

- Hydrotreating: NiMo-alumina catalyst
- Hydrocracking: zeolite bifunctional catalyst

10-30 mL/h continuous hydroprocessing unit



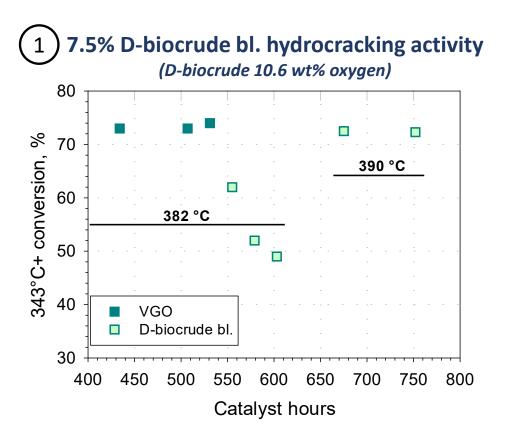
Feed properties

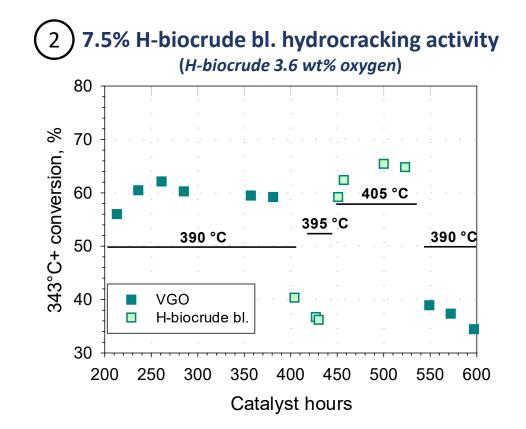
	(1)		(2)		
Property	HTL biocrude	D-biocrude	HTL biocrude	H-biocrude	VGO
distillation yield, wt%	-	63.4	-	-	-
density at 15.6°C, g/mL	1.0536	0.9925	1.0880	0.9910	0.9759
carbon, wt%	80.0	79.5	79.7	84.8	84.8
hydrogen, wt%	9.4	10.0	8.6	10.5	11.1
sulfur, wt%	<0.1	<0.1	0.1	<0.1	3.6
nitrogen, wt%	<0.1	<0.1	0.3	0.1	0.3
oxygen, wt%	10.5	10.6	11.3	3.6	0.5
Fractional composition					
distillate (<343°C), wt%	27.7	47.1	17.1	42.8	4.5
vacuum gas oil (343-525°C), wt%	34.7	49.6	31.9	28.7	86.5
vacuum residue (>525°C), wt%	37.6	2.7	51.0	28.5	9.0

Hydrotreating

0

500


Plugging!


550

ada

387 °C

Hydrocracking

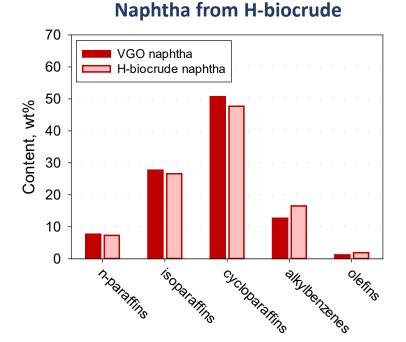
Pressure = 1,600 psi; LHSV = $1.5 h^{-1}$; H₂/oil ratio = 800 NL/L

Ressources naturelles

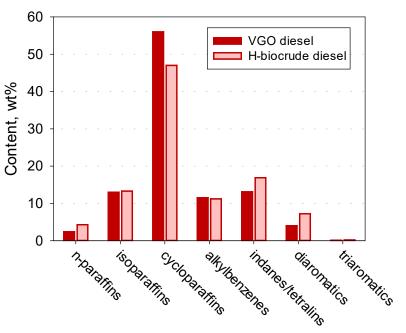
ada

Hydrocracking (continued...)

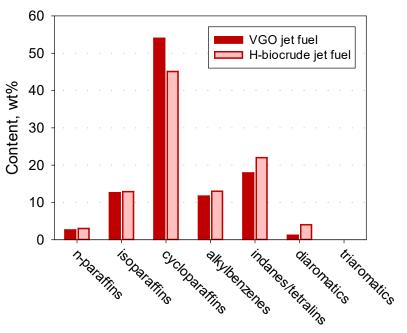
Overall product distribution* and hydrogen consumption


	(1)	\mathbf{D}	(2)	
Parameter	VGO	7.5% D-biocrude blend	VGO	7.5% H-biocrude blend
hydrotreating temperature	base	+0 °C	base	+10-12 °C
hydrocracking temperature	base	+8 °C	base	+15 °C
gases (H_2S , C_1-C_4), wt%	7.0	6.9	6.9	7.2
naphtha (35–204°C), wt%	48.6	44.8	33.4	36.2
diesel (204–343°C), wt%	30.3	32.8	32.6	35.6
unconverted oil (>343°C), wt%	17.7	19.1	29.9	23.8
hydrogen consumption, scf/bbl	2,343	2,310	1,798	1,747

*Liquid product yields estimated based on simulated distillation analysis

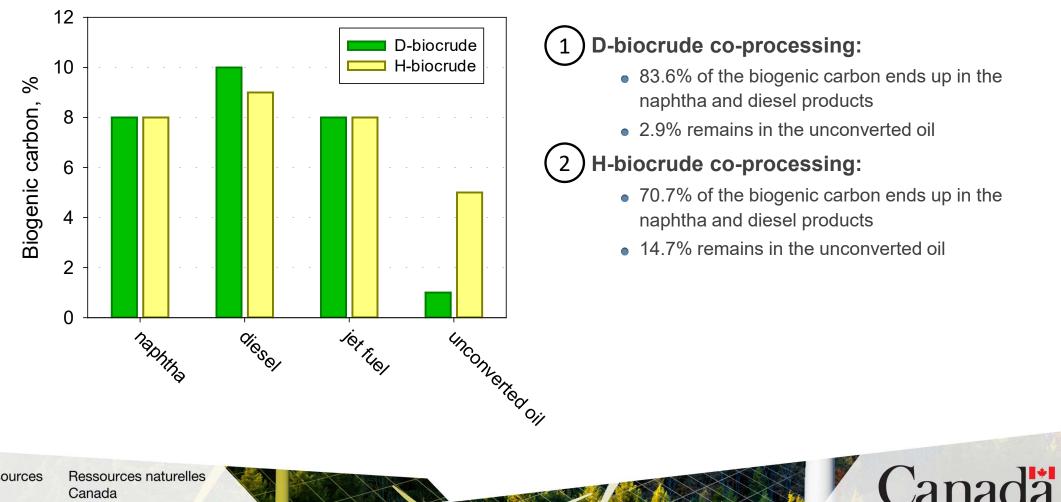


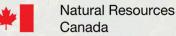
Canada


Co-processed fuel composition

Diesel from H-biocrude

Jet fuel from H-biocrude


Canada


Natural Resources Canada Canada

Ressources naturelles

Biogenic carbon analysis

Biogenic carbon content per ASTM D6866

12

Key highlights

- Co-processing the biocrude treated by distillation had a lower impact on the hydrocracking process than the one treated by partial HDO
 - The removal of heavy material containing the most difficult oxygen species made a significant difference
 - Distillation residue not utilized in the co-processing
- The biocrude treated by HDO required higher co-processing temperatures to offset the effect of resistant oxygen compounds that survived HDO
- Both co-processing schemes were shown to stand on par with their corresponding VGO baselines in terms of hydrocracking product yields, and without consuming more hydrogen
- The co-processed fuel products were to some extent more aromatic than those from VGO
- Biogenic carbon was shown to be preferentially delivered to the desired products through this coprocessing route

Acknowledgement

- CanmetENERGY Devon's Technical Services Team and Standard Analytical Lab
- Government of Canada's Office of Energy Research and Development (OERD) and the Canadian Forest Service (CFS)
- Industry partners

Anton Alvarez-Majmutov, Ph.D.

Biofuels and Process Modeling R&D Lead Email: anton.alvarez-majmutov@nrcan-rncan.gc.ca Telephone: +1 587-334-6268

Canada

© His Majesty the King in Right of Canada, as represented by the Minister of Natural Resources, 2024

Canada

