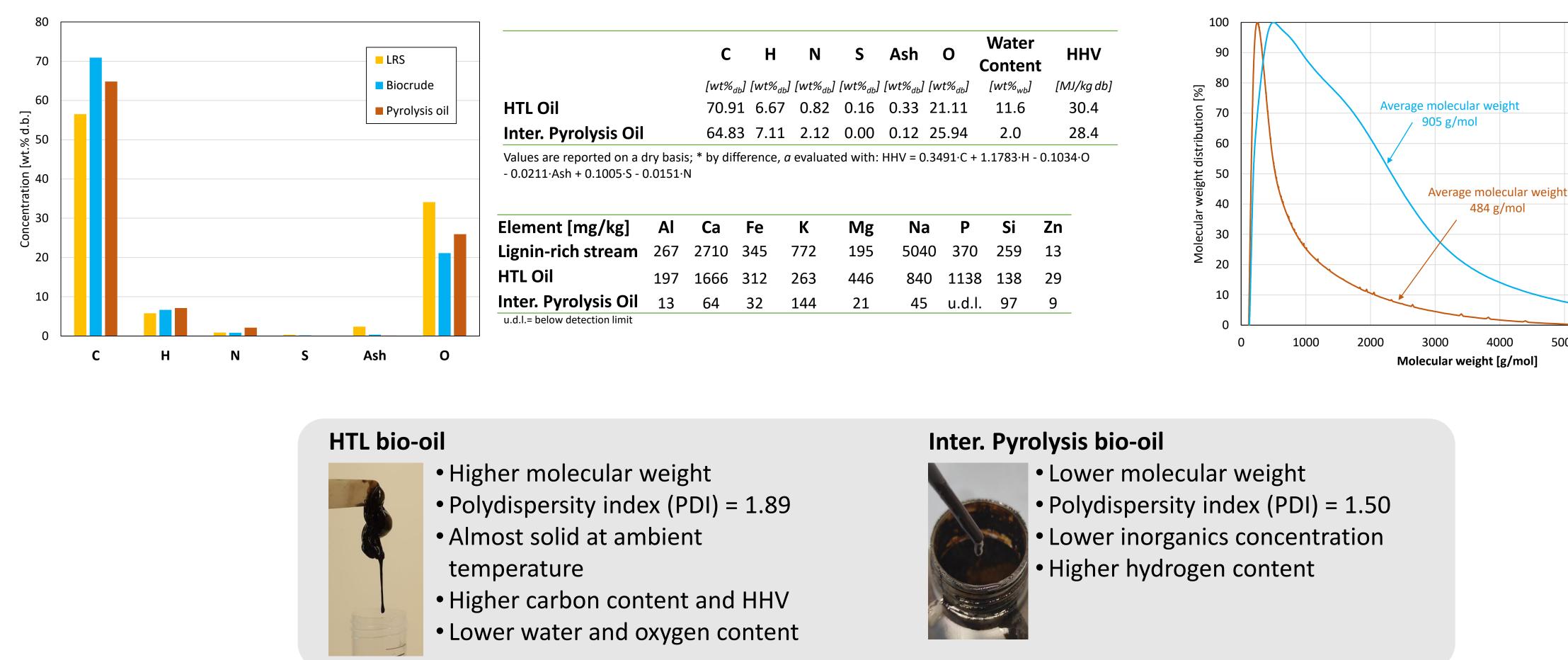
Comparison of hydrothermal liquefaction and pyrolysis of cellulosic ethanol lignin: bio-oils characterization and energy analysis

Di Fraia A.¹, Lombardi G.^{1,2}, Miliotti E.¹, Rizzo A.M.^{1,2}, Chiaramonti D.^{1,3}

-

¹Renewable Energy Consortium for Research and Demonstration (RE-CORD), Firenze, Italy;

²Department of Industrial Engineering, University of Florence, Italy;


³Energy Department DENERG, Polytechnic of Turin, Italy

ABSTRACT

There are social problems for the production of biofuel from firstgeneration feedstock related to the competition with agricultural land, fresh water uses and food vs. fuel issues. For these reasons, in Renewable Energy Directive to 2030 (RED II) the contribution of biofuel from "high indirect land-use change" was limited to 2019 consumption. The second-generation biofuels produced from lignocellulosic feedstock, such as forestry and agricultural residue, or from waste and industrial coproducts are exempted from this limitation. The aim of the work is a comparison between two different processes for the valorization of lignin-rich stream from 2nd generation ethanol taking into account the chemical and physical characteristics of the two bio-oils and the energy balance of the processes. Hydrothermal liquefaction (HTL) and intermediate pyrolysis processes were performed in two continuous small-scale pilot plant (inlet flowrate 1 - 2 kg/h). The HTL process was performed in a plug flow reactor, while the intermediate pyrolysis in a screw reactor.

BIO-OIL CHARACTERIZATION

MATERIAL AND METHODS

Feedstock

• Lignin-rich stream from 2nd generation ethanol plant • 69.7 wt.% w.b. moisture content

Test conditions					
Operating conditions	HTL	Intermediate pyrolysis			
Pretreatment	Drying and milling	Drying and milling			
Inlet mass flow	1–2 kg/h	1–2 kg/h			
Temperature	350°C	450°C			
Residence time	10 min	5 min			
Biomass/water ratio	5 wt.%	_			

CO-PRODUCTS

	Cha	r		Aqueous pl	nase (A	AP)	
	C H N A	sh O I	Fixed carbon O/C H/C HHV	Concentration [g/l]	HTL AP	Inter. Pyrolysis AP	-
	[wt% _{db}] [wt% _{db}] [wt% _{db}] [w 64.4 5.01 1.46 7 81.0 3.50 1.60 8		<pre>[wt%_{db}] - [MJ kg⁻¹db] 93.30 0.25 0.93 26.0 70.40 0.05 0.52 31.6</pre> Hydrochar: • Higher oxygen and fixed carbon content • Higher H/C ratio	Acetic acid Propionic acid Lactic acid Glycerol Glutaric acid Glycolic acid Catechol Benzoic acid 3-methyl-1,2-cyclopentanedione Phenol Guaiacol Syringol Methanol Acetic acid	0.89 0.51 1.96 0.00 0.08 2.05 0.20 0.00	18.4 1.2 0.0 8.2 1.6 0.0 4.4 0.4 0.4 0.6 4.3 0.3 0.3 0.3 45.6 18.4	 Higher concentration of organics in intermediate pyrolysis AP: Reaction water Similar detected compounds: Lactic and glycolic acid not converted HTL process due to lower temperature Higher methanol production in inter. pyrolysis: Demethylation reaction Demethoxylation reaction
		ТОС pH [-]	7.71 5.2	24.8 4.9			
	Biochar Man	agemen	t	<u> </u>		HTL AP Manag	gement
Combu Agricul	tural	Provide and pyr Soil imp		Partial recycleAqueous phaseSupercritical w	e refor	ming (APR)	 Increase process efficiency H₂ production VG) Syngas
application			Anaerobic digestion			Biogas	

Higher concentration of organics in
intermediate pyrolysis AP:
 Reaction water
Similar detected compounds:
 Lactic and glycolic acid not converted in
HTL process due to lower temperature
Higher methanol production in inter.
pyrolysis:
· Deve ethydetieve vee etieve

— Pyrolysis oil

-Biocrude

0.05 g/L (NaOH) Catalyst concentration

Bio-oil characterization

• Elemental analysis, GPC, KF, ICP

Aqueous phase characterization

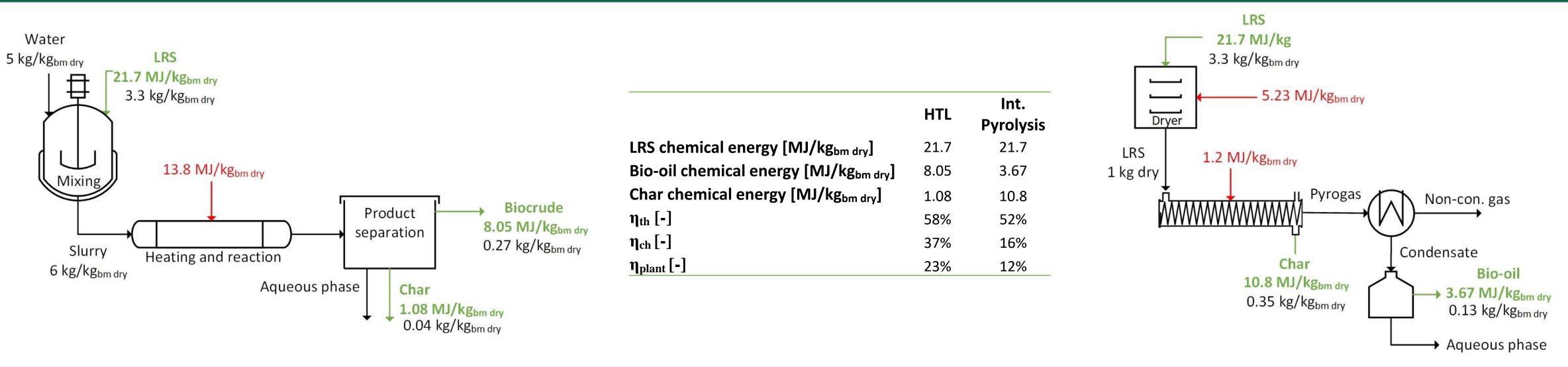
• HPLC, TOC and pH

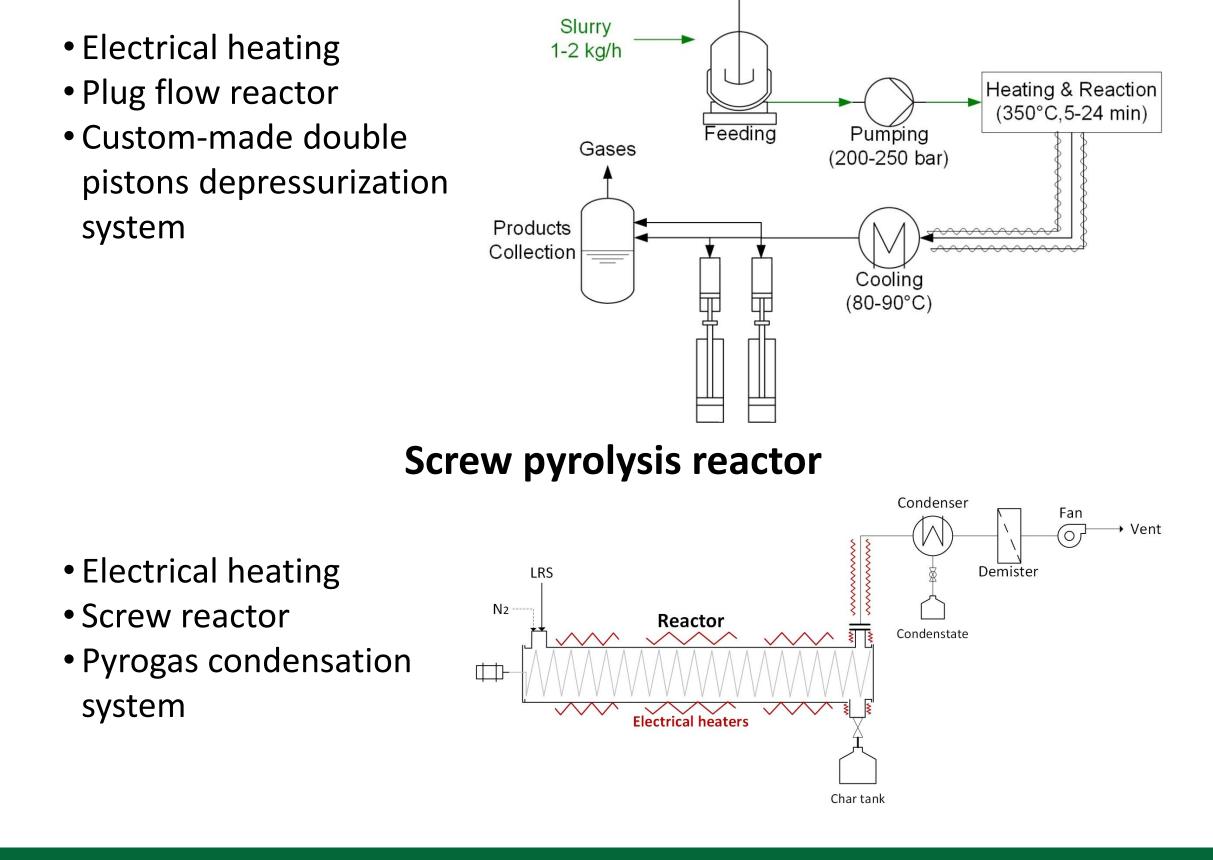
Bio-char characterization

• Proximate and ultimate analysis

Energy balance

• Biomass-to-water ratio in HTL = 20% • Heat for pyrolysis = 1.2 MJ/kg dry • Thermal losses were neglected


 $\frac{W_{bio-oil}}{W_{bio-oil}} = \frac{m_{bio-oil} \cdot HHV_{bio-oil}}{W_{bio-oil}}$ • $\eta_{th} =$ W_{thin} W_{th in} $\frac{W_{bio-oil}}{W_{bio-oil}} = \frac{m_{bio-oil} \cdot HHV_{bio-oil}}{M_{bio-oil}}$ • η_{th} =m_{LRS}·HHV_{LRS} W_{ch}


 $W_{bio-oil} = \frac{m_{bio-oil} \cdot HHV_{bio-oil}}{m_{bio-oil} \cdot HHV_{bio-oil}}$ • $\eta_{plant} =$ m_{LRS}·HHV_{LRS}+W_{th} ir $W_{LRS} + W_{th in}$

EXPERIMENTAL SETUP

Continuous Hydrothermal Liquefaction Plant

ENERGY BALANCE

CONCLUSIONS

- The results of proximate and ultimate analysis showed that HTL bio-oil had higher carbon content and HHV, lower oxygen and water content
- The molecular weight of HTL bio-oil is considerably higher than intermediate pyrolysis oil and consequently it is almost solid at ambient temperature
- The biochar produced in intermediate pyrolysis process could be used to provide the required heat for the reaction or as soil improver
- The HTL AP management is one of the main problems for industrial scale-up of the process and the main investigated solution are APR, SWG and anaerobic digestion
- Despite the high energy consumption for biomass drying, the total specific thermal energy required for intermediate pyrolysis process is lower than HTL process

• Due to the higher bio-oil yield and HHV, the HTL process exhibited higher thermal, chemical and plant efficiency

CONTACT & INFORMATION			
Prof. David Chiaramonti	 Di Fraia et al. "Coupling Lignin-rich Hydrothermal Liquefaction and Aqueous Phase Reforming for Integrated Production of Biocrude and Renewable H₂", <u>http://doi.org/10.1002/aic.17652</u> 		
david.chiaramonti@polito.i	• Miliotti et al. "Lignocellulosic Ethanol Biorefinery: Valorization of Lignin-Rich Stream through Hydrothermal Liquefaction", https://doi.org/10.3390/en12040723		
+39 055 4796738	 Dell'Orco et al. "Hydrothermal Depolymerization of Biorefinery Lignin-Rich Streams: Influence of Reaction Conditions and Catalytic Additives on the Organic Monomers Yields in Biocrude and Aqueous Phase", https://doi.org/10.3390/en13051241 		

The scientific work was supported by the project BECOOL, "Brazil-EU Cooperation for Development of Advanced Lignocellulosic Biofuels" (Grant Agreement No. 744821) and the project Heat-to-Fuel (Grant Agreement No. 764675) which received funding from the European Union's Horizon 2020 Research and Innovation Programme.