
Synthesis of chemicals from marine litter: addressing Ocean's pollution

Gian Claudio Faussone SINTOL – marGnet project

The International Conference on Thermochemical Conversion Science: Biomass & Municipal Solid Waste to RNG, Biofuels & Chemicals October 7-9, 2019 | The Hyatt Regency O'Hare | Rosemont, IL

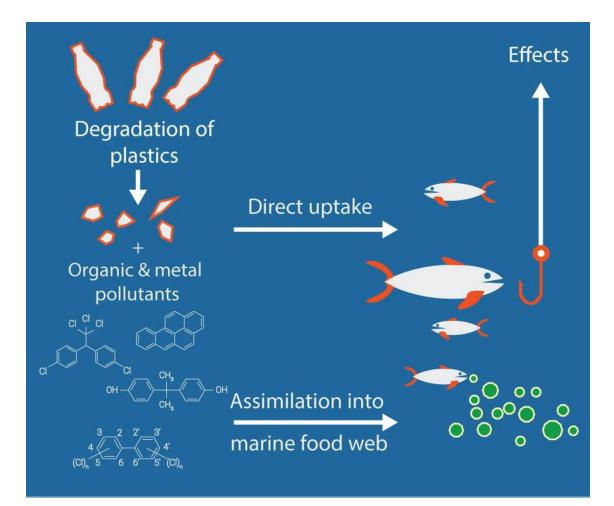
Plastic flowing into the Oceans: waste mismanagement

275 million metric tons (MT) of plastic waste was generated in 192 coastal countries in 2010, with 4.8 to 12.7 million MT entering the ocean*.

From 32 to 86 MBOE (barrel oil equivalent) flowed into the sea in 2010: an equivalent of 2 to 5 Billion USD value Without waste management infrastructure improvements, the cumulative quantity of plastic waste available to enter the ocean from land is predicted to increase by an order of magnitude by 2025

*Jambeck, Jenna R., et al. "Plastic waste inputs from land into the ocean." Science 347.6223 (2015): 768-771.

Plastics in the Oceans: wide family


- Floating or stranded macroplastics (PE, PP)
- Ghost nets, fishing gears, acquaculture (nylon, PE)
- Plastic debris from few μm to few mm (microplastics)
- Sunk plastics (thermosets, resins, etc..)

- Contaminated feedstock difficult to recover and recycle
- It is litterally a sunk cost

Direct and indirect ecotoxicology

All plastic is generated on land

In 2015, 4.1 million tons of plastic "bags, sacks, and wraps" were generated (including PS, PP, HDPE, PVC, & LDPE) in USA with a recycling rate of just 12.8%*

In 2016, 27,1 million tons of plastic waste were reclaimed in EU with a recycling rate of 31%**

The Gulf of Mexico contains some of the highest concentrations of microplastics worldwide, with the majority of which being plastic microfibers. Researchers hypothesize the large drainage basin of the Mississippi River, which outflows into the Gulf, is the main transporter of land based plastics^{***}

*US EPA. 2018. Advancing Sustainable Materials Management 2015 Tables and Figures: Assessing Trends in Material Generation, Recycling, Composting, Combustion with Energy Recovery and Landfilling in the United States. Pp. 9

**PlasticsEurope report 2018

***Abundant plankton-sized microplastic particles in shelf water of the northern Gulf of Mexico, Rosana Di Mauro, Matthew J. Kupchik, and Mark C. Benfield, Environmental Pollution November 2017: 230, 798-809.

Recycled plastic's fate

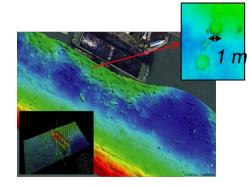
31.1 % Recycled* ARE WE SURE ?? 37% outside EU 63% inside EU

Malaysia Plastic pollution: One town smothered by 17,000 tonnes of rubbish By Yvette Tan BBC News, Jenjarom February 13, 2019

America's grungy 'recycled' plastic is creating wastelands in Asia PRI's The World June 13, 2019 · 9:00 AM EDT By Patrick Winn

Greenpeace After 'The Recycling Myth' Report: Updates from the Field Kedah April 18, 2019

Main problems to address


• Technical challenge to recycle ML

- Mechanical recycling cannot be widely applied to ML: (need for washing, cleaning, etc..)
- Large volume solutions required: not to shift one problem to another
- Economic challenge
- How to create value ? «Circular Economy» concept set by EU
- New challenges:
- 700,000 fibers could be released from an average 6 kg wash load of acrylic fabric (Napper et al, 2016)

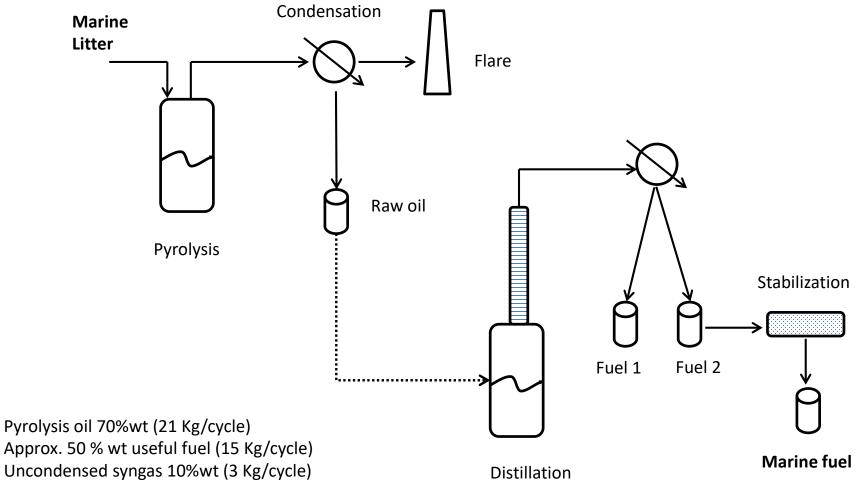
 Besides prevention, making fuel is part of the answer: global annual marine fuel demand is >400 Mton

marGnet concept: mapping and recycle

Mapping ML

Reduce

Marine Fuel



Co-funded by the European Maritime and Fisheries Fund of the European Union

This project has received funding from the European Union's EASME-EMFF funding programme - Sustainable Blue Economy Call under grant agreement No EASME/EMFF/2017/1.2.1.12/S2/05/S12.789314

- Taxation or punishment policies are ineffective to deal with ML
- Find a feasible way to create value from ML collection
- Understand environmental impact of this approach
- Get engagement of fishermen
- Inherent incentive for pollution
- prevention <u>No public subsidies</u>
- Inherent Incentives for Sea cleaning
- Improve policies to make it legally possible

Experimental set up

• Char (solid residue) 20%wt (6 Kg/cycle)

٠

٠

٠

Produced fuel

Parameter	Value	Unit	Limits ISO 8217		
			DMA (ECAs)	DMB (ECAs)	
Cetane number	60.7				
Cetane index	66.7				
Density @ 15 °C	802.7	kg/m³	<890	<900	
S	42.9	mg/kg	<10000 (1000)	<10000 (1000)	
Flash point	48	°C	>60	>60 (
Carbon residue	0.05	% (w/w)	<0.3	<0.3	
Ash	<0.005	% (w/w)	<0.01	<0.01	
Lubricity @60 °C (HFRR)	276	μm	<520	<520	
Cinematic viscosity @40C	2.3	mm²/s	>2; <6	>2; <11	
Pour point	-6	°C	0	6	
% recovered @ 250C	36.3	% (V/V)			
% recovered @ 350C	93.8	% (V/V)			
95 % (V/V)	354.5	°C`́́			

Marine Gas Oil (DMA) average quotation (Sept. 24 2019): 672,5 USD/ton *

Low S fuel demand growing due to IMO ANNEX VI: max 1000 ppm ECAs areas

Values obtained by processing unsorted plastic waste mined from landfill

*source: Ship&Bunker.com

Hydrogenated produced fuel

Proporty	Value		Limits EN590	
Property	value	Unit	min	max
Density at 15 °C	790.6	kg/m ³	820.0	845.0 🔴
Viscosity at 40 °C	2.377	mm²/s	2.000	4.500 🔵
Sulfur Content	12.1	mg/kg		10.0 🔵
Polyaromatic Hydrocarbons	_	% wt		8 🔵
Distillation				
Recovered at 250 °C	41.0	% vol		65 👩
Recovered at 350 °C	95.2	% vol	85	
95% (V/V) Recovered at	349.5	°C		360
Derived Cetane Number	74.7		51	
Cetane Index	71.5		46	•
Flash Point	52.5	°C	55	0
Copper Corrosion (3h at 50 °C)	1A		1A	
Cloud Point	8	°C		
Pour Point	2	°C		0
CFPP	2	°C		0
Lubricity Corrected WSD1.4 at 60				
°C	552	μm		460 🔴
Calorific Value		•		
Gross	46,98	MJ/kg		
Net	43,83	MJ/kg		

Values obtained from hydrogenated fuel made from landfill plastic waste

Take home message

- Fuels production is a pragmatic approach to deal with ML:
 - Circular economy concept and value generation
 - Marine fuel market volume matches available feedstock
 - Depollution cycle w/o public subsidies is possible
- Low S fuels:

- Meet environmental policies at no extra cost

- Drop in fuels:
 - MF readily available, terrestrial with mild HDS

Acknowledgment

marGnet has received funding from the European Union's EASME-EMFF funding program – Sustainable Blue Economy Call under agreement n. EASME/EMFF/2017/1.2.1.12/S2/05/SI2.789314

Thank you!

"There could be more plastic than fish in the ocean by 2050"*

> Gian Claudio Faussone gianclaudio@sintol.it

www.margnet.eu

Sewage surfer © Justin Hofman. Wildlife Photographer of the Year 2017 *Ellen MacArthur Foundation, World Economic Forum Dec.2017