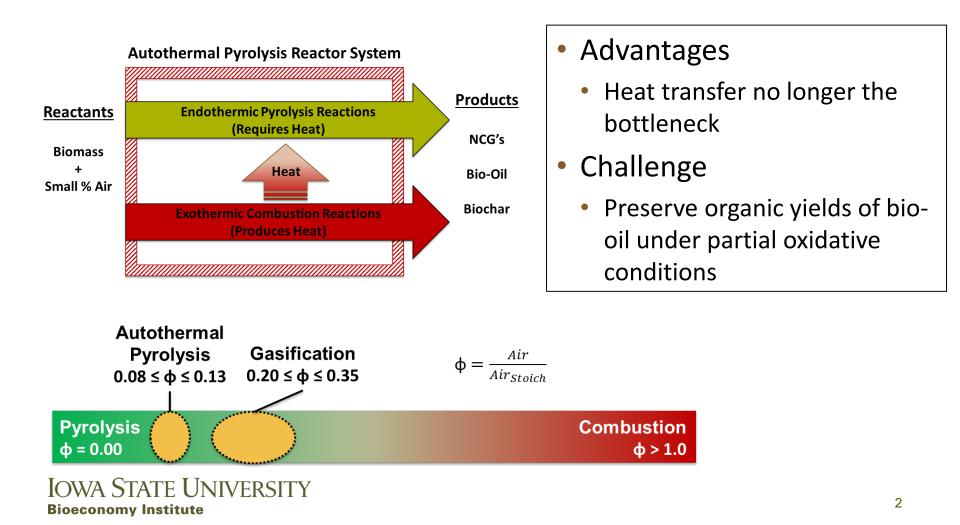
IOWA STATE UNIVERSITY Bioeconomy Institute

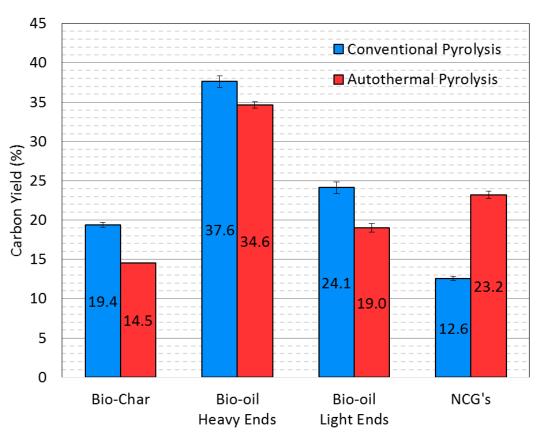


Deriving Kinetics of Autothermal Pyrolysis Partial Oxidation Reactions tcbiomassplus2019 October 7-9, 2019

Chad A. Peterson, Jake K. Lindstrom, Preston A. Gable, Joe P. Polin, and Robert C. Brown

Autothermal Pyrolysis

Part of the pyrolysis products are oxidized to provide energy for endothermic pyrolysis reactions



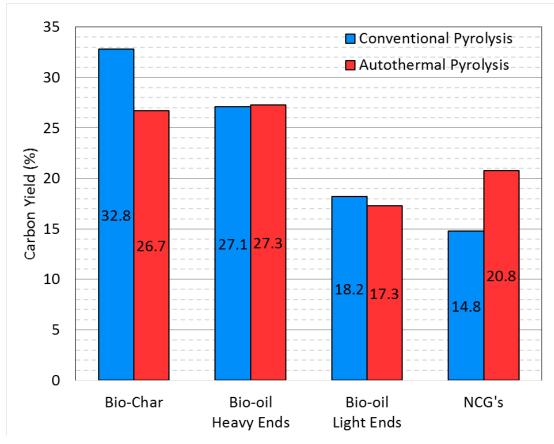
Partial oxidation primarily consumes aqueous phase and bio-char during autothermal pyrolysis (ATP) of red oak

- Heavy Ends
 - Decreased 3.0%
- Light Ends
 - Decreased 5.1%
- Total Bio-Oil Yield
 - (61.7% vs 53.6%)
- Bio-Char
 - Decreased 4.9%
- NCG's
 - Increased by 11.6%
- Equivalence Ratio: 0.1073

IOWA STATE UNIVERSITY Bioeconomy Institute Polin, Joe P., Peterson, Chad A., Whitmer, Lysle E., Smith, Ryan G., Brown, Robert C., Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor *Applied Energy*, 2019

3

Corn stover carbon balance indicates char is primarily oxidized with bio-oil relatively unchanged

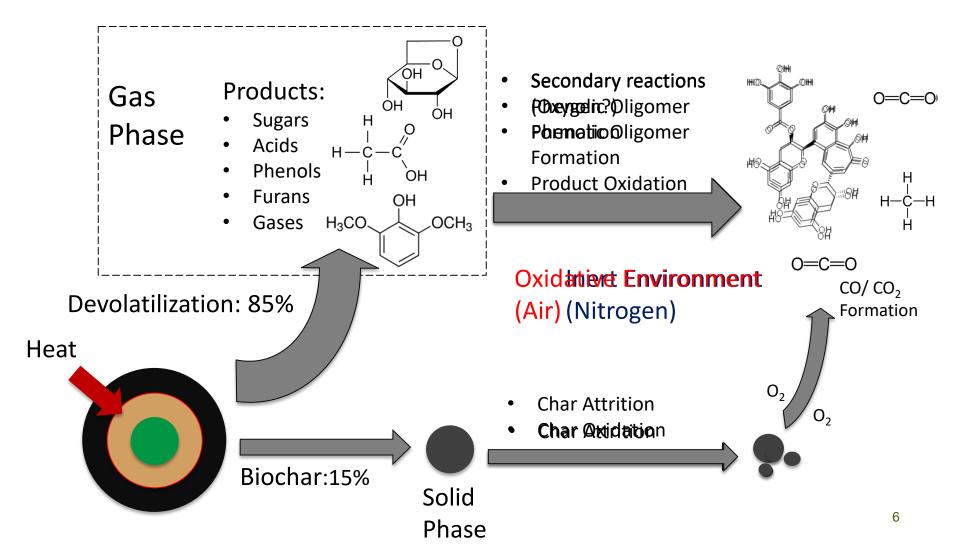

- Heavy Ends
 - Increased 0.2%
- Light Ends
 - Decreased 0.9%
- Total Bio-Oil Yield
 - (45.3% vs 44.6%)
- Bio-Char
 - Decreased 6.1%
- NCG's
 - Increased by 6.0%

IOWA STATE UNIVERSITY

Bioeconomy Institute

• Equivalence Ratio: 0.068

Polin JP, Carr HD, Whitmer LE, Smith RG, Brown RC. Conventional and autothermal pyrolysis of corn stover: Overcoming the processing challenges of high-ash agricultural residues. *J* Anal Appl Pyrolysis. August 2019


Modeling Autothermal Pyrolysis

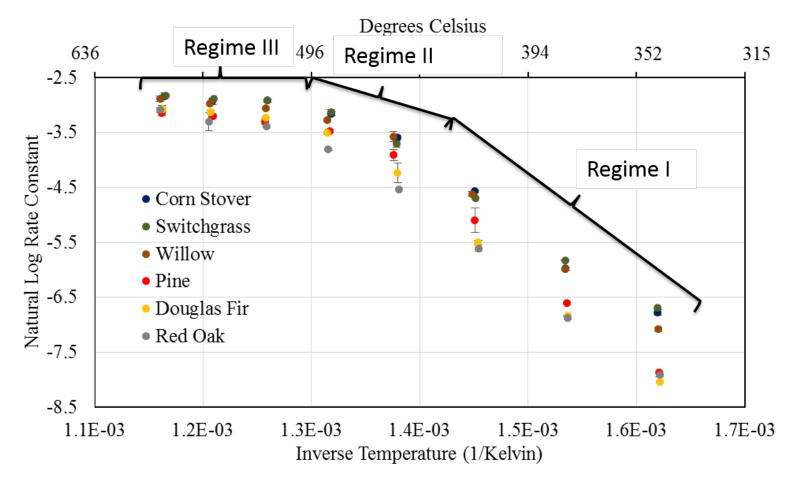
Determine underlying oxidation reactions in autothermal pyrolysis (ATP)

- 1. Gas-Solid Reactions
 - Devolatilization of biomass (i.e. pyrolysis)
 - Biochar oxidation (enthalpy for pyrolysis)
- 2. Gas Phase Reactions
 - Oxidation of pyrolysis products (enthalpy for pyrolysis)
 - Partial oxidation of products (phenolic oligomer formation)

Oxygen does not interact with solid biomass particle until fully devolatilized

Char reaction kinetics were derived using TGA and fluidized bed experiments

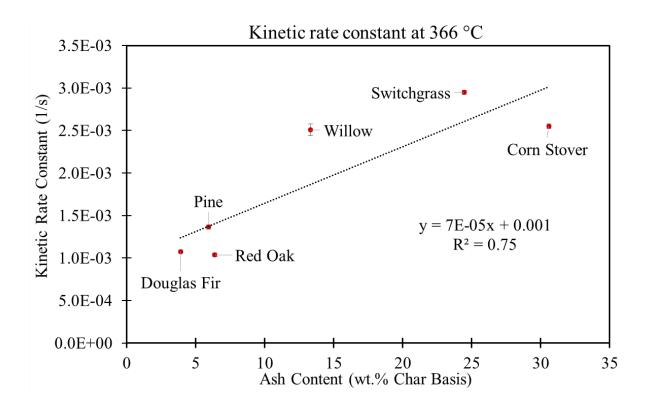
- Ramp to temperature under nitrogen with stabilization for 5-10 minutes (still nitrogen)
 - Drive off volatile products (~15wt%)
- 2. Switch sweep gas from nitrogen to air
- 3. Use mass loss to calculate rate constants
 - Simple Volumetric Model


W, W	Feedstock	Douglas Fir	Pine	Red Oak	Willow	Switchgrass	Corn Stover
	Proximate Analysis	wt.% (as received)					
	Fixed Carbon	62.01	62.00	56.25	48.69	42.44	35.88
	Ash	3.91	5.94	6.39	13.31	24.45	30.59
	Ultimate Analysis	wt.% (dry basis)					
	Carbon	74.33	75.60	71.97	70.66	56.02	51.19

IOWA STATE UNIVERSITY Bioeconomy Institute

"Char oxidation kinetics of fast pyrolysis produced biochars using combined TGA and fluidized bed methods"-in prep

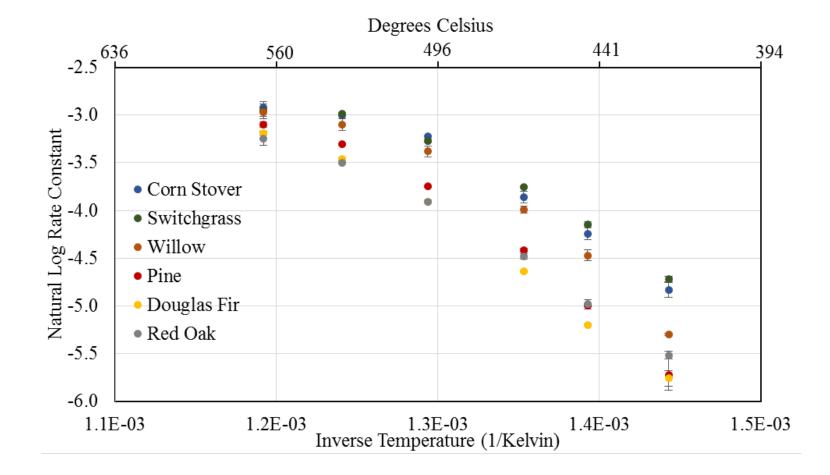
TGA results indicate a convergence of oxidation rates at elevated temperatures


 Demonstrates that at pyrolysis temperatures (400-600 °C) biochar experiences all three regimes of combustion*

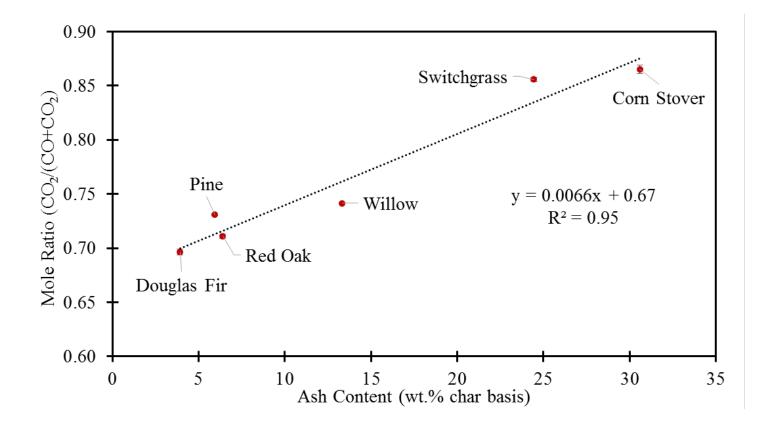
^{*}Szekely, J., Evans, J. & Sohn, H. Y. Gas-Solid Reactions. (Academic Press, 1976)

Kinetic rate correlates well with ash content in biochar under kinetically limited regime

- Higher ash chars have reaction rate ~x3 higher than low ash char
- Modest correlation (R² = 0.75) indicates other factors likely impacting oxidation


Fluidized bed allows for isothermal oxidation tests of sieved biochar

- Fluidized bed operated at near isothermal conditions
 - Fluidize with 3.5 SLPM air
 - Pneumatically inject 100 milligrams of sieved (600-850 micron) biochar
- DeJaye System measured CO/CO₂ every second allowing for transient combustion experiments
- Reactor kept isothermal at six temperatures to derive reaction kinetics


Fluidized bed results have a similar Arrhenius plot to TGA experiments with a convergence in rates at higher temperatures

IOWA STATE UNIVERSITY Bioeconomy Institute

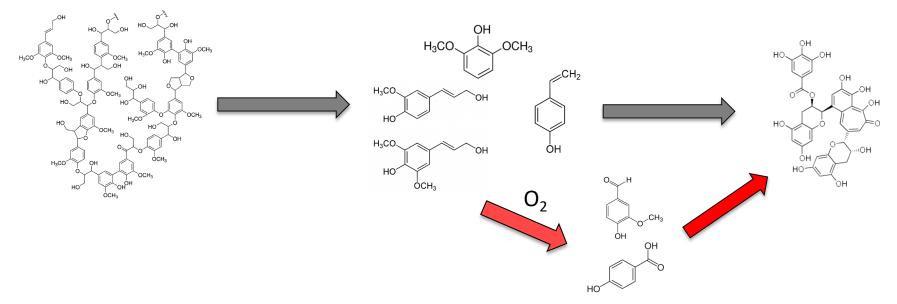
CO₂ formation had a strong correlation with inorganic content in biochar

Ash content and inorganic sites can promote CO₂ formation*

*Dupont, C. *et al.* How inorganic elements of biomass influence char steam gasification kinetics. *Energy* **109**, 430–435 (2016).

Faster kinetic rate and higher CO₂ formation supports experimental work with autothermal pyrolysis of corn stover and red oak

- 1M HCl washed chars reduced CO₂ formation at 500 °C
- CO₂ formation agrees with previous correlation (predicted 0 wt.% ash would have 0.67 CO₂ formation-'y intercept')

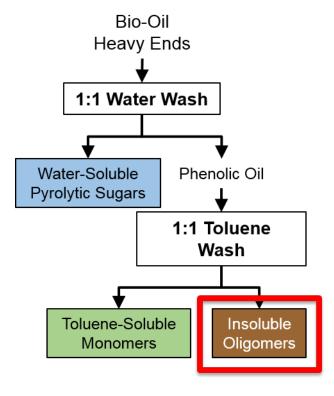

	Mole Ratio C		
Feedstock	Unwashed	Unwashed HCI Washed	
Corn Stover	0.87	0.68	-22.0%
Switchgrass	0.86	0.66	-23.1%
Red Oak	0.71	0.62	-12.2%

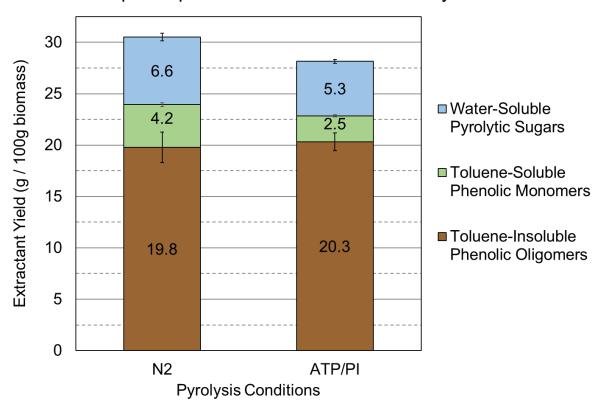
- Char oxidation studies support autothermal pyrolysis observations
 - Oxidation to CO₂ would release more energy than CO oxidation (-393 kJ/mol vs -110 kJ/mol)
 - Char would be preferentially consumed in autothermal pyrolysis of corn stover (faster kinetic rate)
 - Higher CO₂ formation would release more energy per mole of oxygen
 - Explains difference in equivalence ratios (0.107 red oak vs 0.067 corn stover)

IOWA STATE UNIVERSITY Bioeconomy Institute

Partial oxidation of lignin derived phenolic compounds during autothermal pyrolysis

 Phenolic oligomers form during biomass fast pyrolysis through recombination/condensation of phenolic monomers^{1,2}




 Partial oxidation of –OH groups would result in higher concentration of carbonyl groups³

IOWA STATE UNIVERSITY Bioeconomy Institute 1. Tiarks JA, et.al, (2019) Visualization of physicochemical phenomena during biomass pyrolysis in an optically accessible reactor. J Anal Appl Pyrolysis.

Patwardhan, P. R., et.al. (2011). Understanding the Fast Pyrolysis of Lignin. *ChemSusChem*,
Asgari, F., & Argyropoulos, D. S. (1998). Fundamentals of oxygen delignification. Part II. Functional group formation/elimination in residual kraft lignin. *Canadian Journal of Chemistry*, 76(11), 1606–1615.

Red Oak phenolic oligomers appear to be least sensitive to partial oxidation conditions

Liquid-Liquid Extractions of Bio-Oil Heavy Ends

IOWA STATE UNIVERSITY Bioeconomy Institute *Polin, Joe P., Peterson, Chad A., Whitmer, Lysle E., Smith, Ryan G., Brown, Robert C., Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor *Applied Energy*, 2019

³¹P NMR and ¹³C NMR of phenolic oligomers measured detectable amount of oxidation

 ³¹P NMR measured a 11% relative decrease in hydroxyl groups on a phenolic oligomer basis

		Phenolic -OH, mmol g PO ⁻¹		
	δ (ppm)	Non-Oxidative	Oxidative	
Aliphatic-OH	150.0-145.5	1.28	1.31	
C5 substituted β-5	144.7-142.8	1.20	1.04	
Condensed 4-O-5	142.8-141.7	0.74	0.65	
Phenolic OH 5-5	141.7-140.2	0.33	0.30	
Guaiacyl phenolic OH	140.2-139.0	1.02	0.88	
Catechol type OH	139.0-138.2	0.73	0.57	
P-hydroxyl-phenyl OH	138.2-137.3	0.30	0.23	
Acid–OH	136.6-133.6	0.27	0.26	
Summation		5.87	5.24	

 ¹³C NMR measured noticeable increase in carbonyls with autothermal produced phenolic oligomers

		% of Carbon Bonds		
	δ (ppm)	Non-Oxidative	Oxidative	
Carbonyl	215.0-166.5	2.68	3.06	
Aromatic C-O Bond	166.5-142.0	17.30	19.25	
Aromatic C-C	142.0-125.0	39.49	36.20	
Aromatic C-H	125.0-95.8	13.18	14.05	
Aliphatic C-O	95.8-60.8	2.90	2.89	
Methoxly-Aromatic	60.8-55.2	15.43	16.37	
Aliphatic C-C	55.2-0.0	9.02	8.18	

IOWA STATE UNIVERSITY Bioeconomy Institute

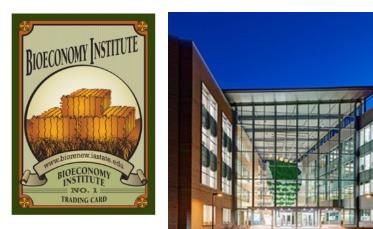
"Oxidation of Phenolic Compounds during Autothermal Pyrolysis of Lignocellulose"-Peterson, Chad; Et al. --In Prep (2019)

Conclusions and Future Work

Conclusions

- Ash content an important parameter when modeling char oxidation under autothermal conditions
 - Increases reaction rate and enhances CO₂ formation
- Analysis of phenolic oligomers suggests subtle but detectable amount of oxidation during autothermal pyrolysis
 - Increase in carbonyls and decrease in total hydroxyl groups indicates oxidation

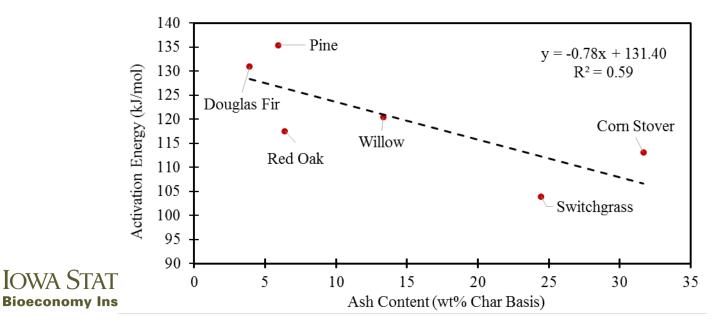
Future Work


- Improvement of gas phase kinetics
 - Current reaction mechanism have limited validation at autothermal pyrolysis conditions

Acknowledgements

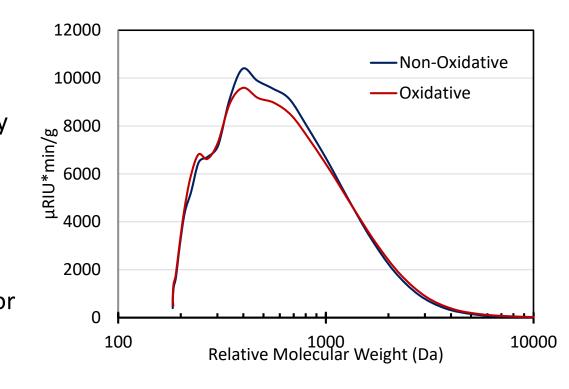
- Bioeconomy Institute
 - Staff and Students
- Funding: Department of Energy
 - Grant #DE-EE0008326
- Collaborators
 - COMFRE (lowa State University)
 - NREL and ORNL
 - AICHE Rapid Institute

Questions?



Supplemental Slides

Activation Energy and Pre-Exponential Factors


Feedstock	Pre-Exponential Factor (1/s)	Activation Energy (kJ/mol)
Douglas Fir	3.76E+07	131
Pine	1.08E+08	135
Red Oak	3.12E+06	118
Willow	1.24E+07	120
Switchgrass	7.09E+05	104
Corn Stover	3.75E+06	113

GPC of phenolic oligomers showed no discernable difference between operating conditions

 Molecular weight was nearly identical between the autothermal and conventionally produced phenolic oligomers

 Suggest limited oxidative environment neither inhibits nor promotes polymerization reactions

Pyrolysis Condition	M _w (Da)	M _n (Da)	Dispersity Index (M _w /M _n)
Non-Oxidative	595	390	1.52
Oxidative	591	378	1.56

IOWA STATE UNIVERSITY Bioeconomy Institute

"Oxidation of Phenolic Compounds during Autothermal Pyrolysis of Lignocellulose"-Peterson, Chad; Et al. --In Prep (2019)