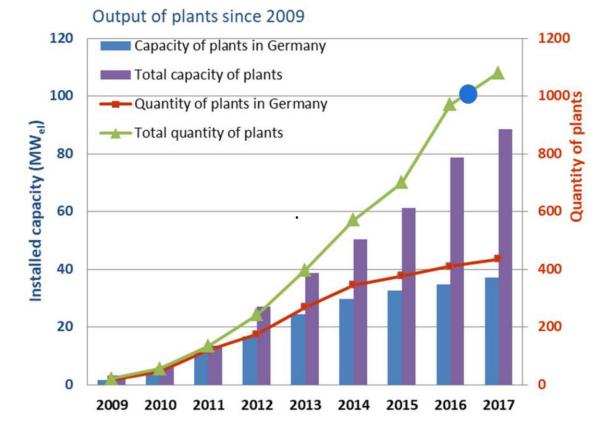
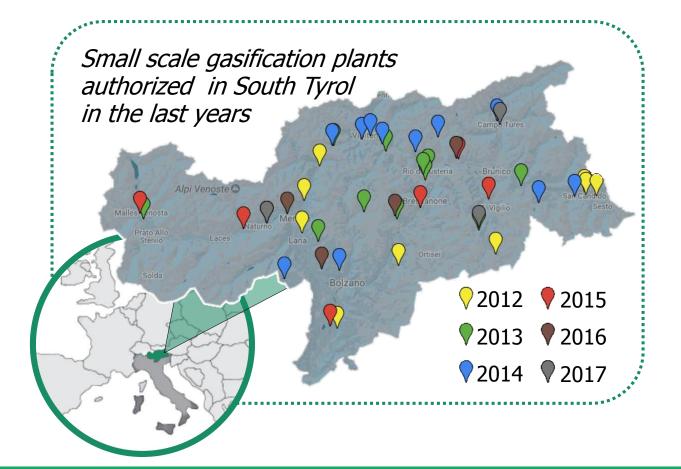


TCBIOMASSPLUS 2019 October 7-9, 2019 | The Hyatt Regency O´Hare | Rosemont, IL

Marco Baratieri

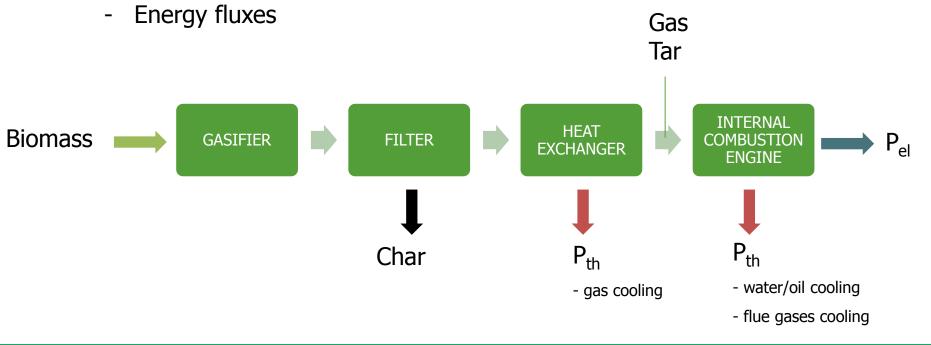

F. Patuzzi, D. Antolini, D. Basso, V. Benedetti, E. Cordioli

Small scale gasification: EU facts & figures


[D. Bräkow, 9. "Internationale Anwenderkonferenz Biomassevergasung", 5. Dezember 2017 / Innsbruck]

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Distribution of gasification plants in South-Tyrol



Outline of systems & monitoring activities

Analyzed parameters

- Feedstock and gasification products (gas, char e tar) characteristics
- Mass fluxes

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

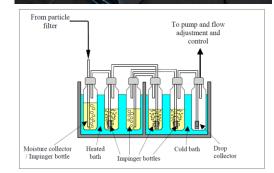
On site monitoring activities

Mass fluxes

- Woody biomass flow rate
- Gasifying agent (air) flow rate
- Producer gas flow rate
- Char flow rate

Energy fluxes

- Input fuel
- Producer gas
- Power and heat

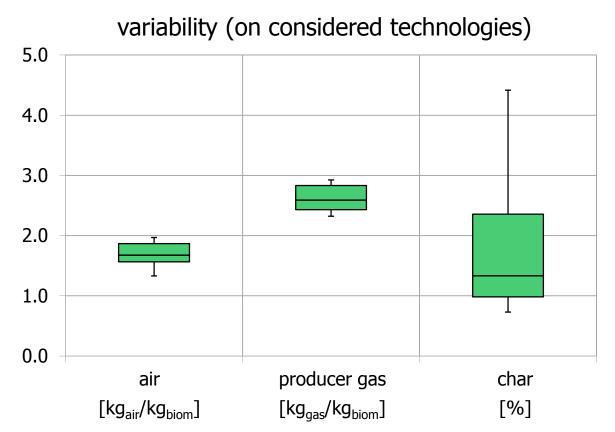


By-products characterization

Liquid: tar

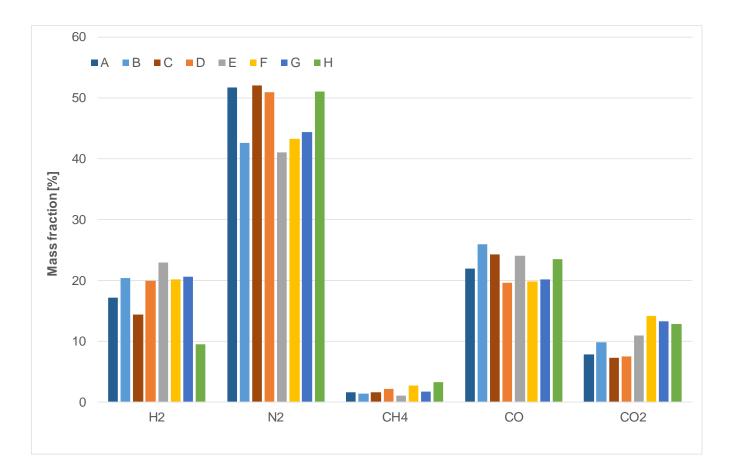
Solid: char

-



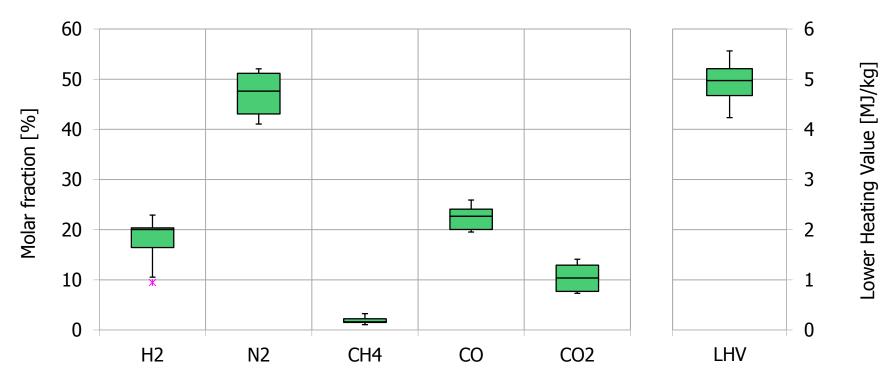

Mass balances of selected technologies

Technology	Dry biomass [kg/h]	Air [kg/h]	Producer gas [kg/h]	Char [kg/h]	Mass balance closure [%]
Α	39.6	68.7	107.6	0.7	-
В	127.3	205.8	313.9	1.3	-5.4
С	116.9	155.6	271.4	1.1	-
D	123.8	185.0	297.6	5.1	-2.0
E	42.6	78.2	121.3	0.7	1.0
F	229.0	363.3	558.8	22.8	-1.8
G	338.4	663.0	990.4	3.6	-0.7
н	150.8	296.9	426.5	1.1	-4.5


UnibZFreie Universität BozenLibera Università di Bolzano
Università Liedia de Bulsan

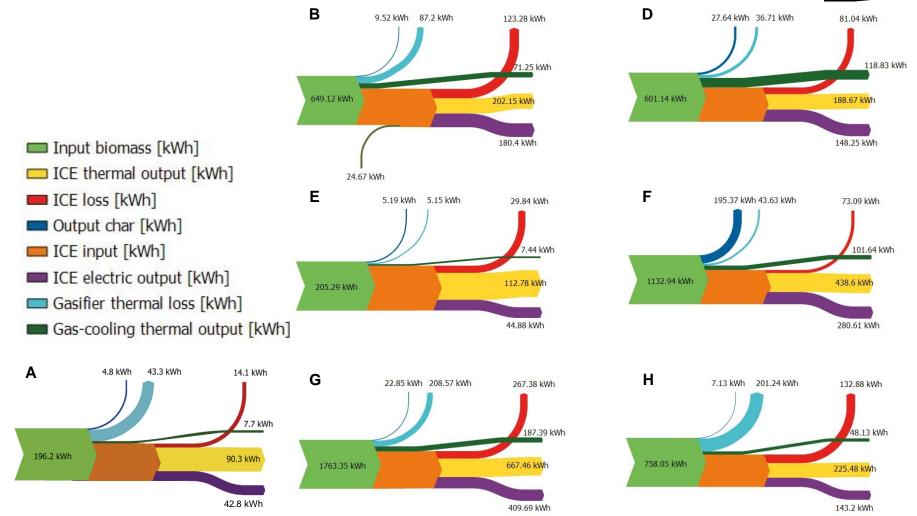
Mass balance

Producer gas composition



Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

Producer gas composition


variability (on considered technologies)

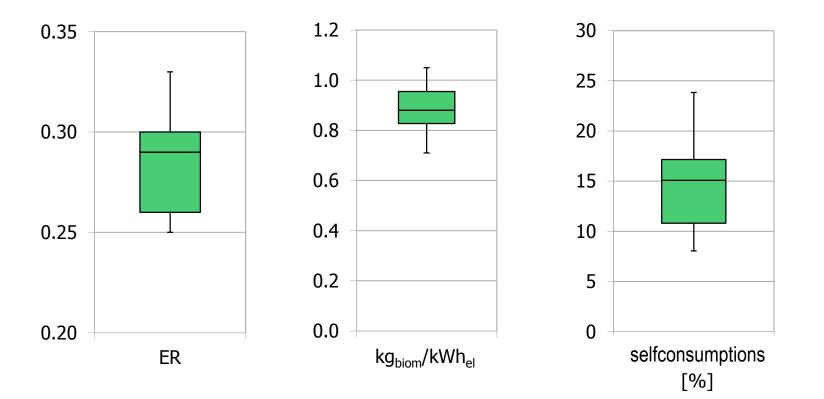
AB & ALIANA

unibz

Small scale gasification: b.o.p.

in the state of th

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano


Gasification performance parameters

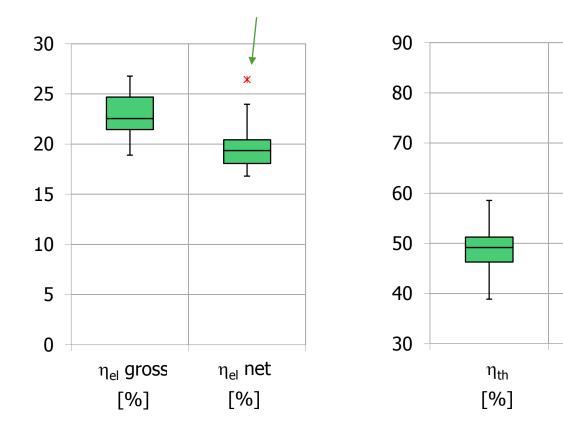
Technology	A	В	С	D	E	F	G	н
ER	0.30	0.26	0.29	0.25	0.29	0.26	0.33	0.30
η _{EL}	18.3%	26.4%	16.8%	18.8%	19.9%	21.9%	19.9%	17.4%
ηтн	49.9%	42.1%	52.5%	51.2%	58.6%	47.7%	48.5%	36.1%
ητοτ	68.2%	68.6%	68.3%	69.9%	78.5%	69.6%	68.4%	53.5%
kg _{BIOM} /kWh _{EL}	0.93	0.71	0.97	0.83	0.95	0.82	0.83	1.05

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan

unibz

Characteristic parameters

Freie Universität Bozen Libera Università di Bolzano Università Liedia de Bulsan


 η_{tot}

[%]

Performance

unibz

Dual fuel engine (3 l/h of vegetable oil)

unibz

Char characterization

Technology	A	В	С	D	E	F	G	Н
Ash [%]	27.84	16.08	49.52	31.50	13.34	6.49	29.17	25.64
C [%]	68.63	80.23	48.03	66.96	78.97	91.59	69.46	69.49
H [%]	0.33	0.49	0.89	0.18	0.68	0.52	0.11	0.20
N [%]	0.83	0.23	0.25	0.16	0.20	0.25	0.12	0.46
O [%]	2.37	2.69	1.31	0.57	6.50	0.60	0.87	3.88
LHV [MJ/kg]	23.04	26.64	14.33	19.65	25.38	30.81	22.84	24.12
PAH [mg/kg]	4881.4	2625.6	2.76	315.6	1223.5	85.6	31.43	441.2
PCB [mg/kg]	339.5	10.7	0.03	0.56	1.83	0.40	0.20	107.8
BET [m2/g]	352	128	78	281	587	272	320	306

Small scale gasification: feedstock

- ✓ <u>Very low moisture content:</u> < 10%
 - Vs direct combustion: 15-20%
 - need of a dryer
- ✓ Constant characteristics
 - homogeneous granulometry (e.g. chips, pellets)
 - constant typology (wood)
 - very few (no) finer presence

✓ Biomass higher cost: approx. 130 – 150 € / ton

Vs direct combustion $70 - 80 \in / \text{ ton}$

- ✓ Char management
 - char screw conveyors extract hot char from the gasifier, so they are subjected to deformation and breakage
 - char management and storage is often problematic because it is a very light material and easily transportable by air

✓ <u>High disposal cost:</u> approx. 200 – 400 € / ton

Small scale gasification: gas cleanup (critical issues).

Pollutant	Example	Problems	Method
Particulate	Ash, char	Erosion	Filtration, scrubbing
Alkali	Na, K compounds	Hot corrosion	Cooling, condensation, filtration, adsorption
Nitrogen	Mainly NH ₃ , HCN	NOx formation	Scrubbing, SCR
Tar	Aromatic compounds	Filters clogging, combustion problems, deposits, catalysts poisoning	Removal, condensation, thermal/catalytic cracking
Sulfur, Clorine	Mainly H ₂ S, HCl	Corrosion, gaseous emissions, catalysts poisoning	Scrubbing, with dolomite or lime, adsorption

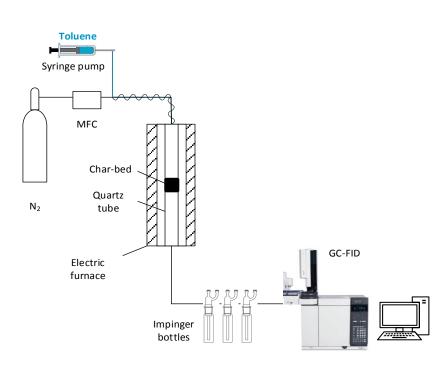
- ✓ Autonomy and control of the system
 - low degree of automation, i.e. problems lead to complete shut down of the system; time to restore the operation
- ✓ <u>Feeding system</u>: (screw conveyors):
 - blockage/distortion for presence inhomogeneous or inert material or different woodchips geometry
- ✓ <u>Reactor and air nozzles</u>
 - high temperature can melt steel components
 - higher T values than expected ones
 - reactors must be periodically opened and cleaned to remove inert materials

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

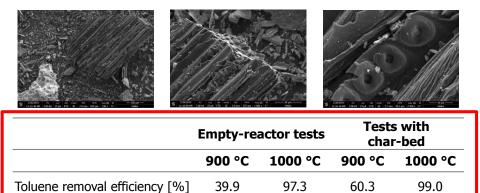
Challenges for gasification

short term CHP upgrade

- fuel flexibility
- partial load operation
- char utilization
 - . filtering medium (ACS subs.)
 - . catalyst

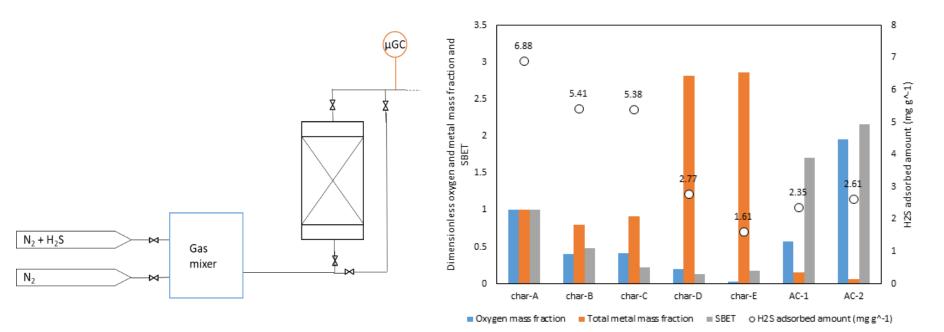

medium term CHP → POLYGENERATION

- biofuels
- hydrogen
- SNG
 - . PtG (Power2gas / CO₂ capture)
 - . integration with other renewables


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Use of char: tar cracking

Cordioli et al., Energies (2019)


Plant type Dual stage gasifier		Ash com	nposition		
Feedstock	Wood chips	Mass fraction			
Proximate and	ultimate analysis	[%]			
	t% _{drv}]	Са	17.47		
Ash	22.20	Mg	2.18		
C	78.97	Fe	1.12		
Н	0.68	Р	0.84		
N	0.00	Mn	0.56		
S	0.20	Na	0.40		
	25.53	Al	0.38		
HHV _{dry} [MJ/kg]		S	0.37		
S _{BET} [m ² /g] Pore volume [cm ³ /g	587	Cr	0.30		
	g] 0.30	Ba	0.22		

Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

Use of char: adsorption

Marchelli et al. (2019) Benedetti et al. (2019)

Exhaust gas CO conv., % Catalysts Char, 20% Co 2.6 Precursors: $Co(NO_3)_2 \cdot 6H_2O$ AC, 20% Co 27.7 Fe(NO₃)₃· 9H₂O 15 - 80Literature Char Supports: Char, Fe 26 HNO₃ treated char Fixed-bed reactor CO₂ activated, HNO₃ treated char H_2 : CO = 2 : 1 $T = 240^{\circ}C$ Commercial activated carbon P = 16 barWHSV = 3600 ml $g^{-1} h^{-1}$ **Method**: Incipient wetness impregnation t = 24 - 72 h

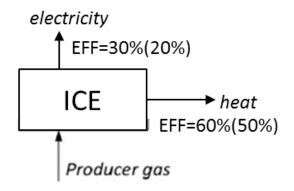
Towards advanced biofuels: polygeneration

Renewable Energy Directive II (RED II)

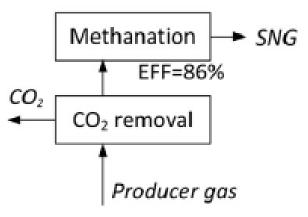
Renewable transport fuels target: 14% (3.5% advanced b.)

SET plan & Action 8 Implementation plan

Gasification is a key technology in 3 (of 7) value chains required: efficiency improvement, 30%, GHG savings, 60% cost reduction, to 50 (2020) – 35 (2050) €/MWh

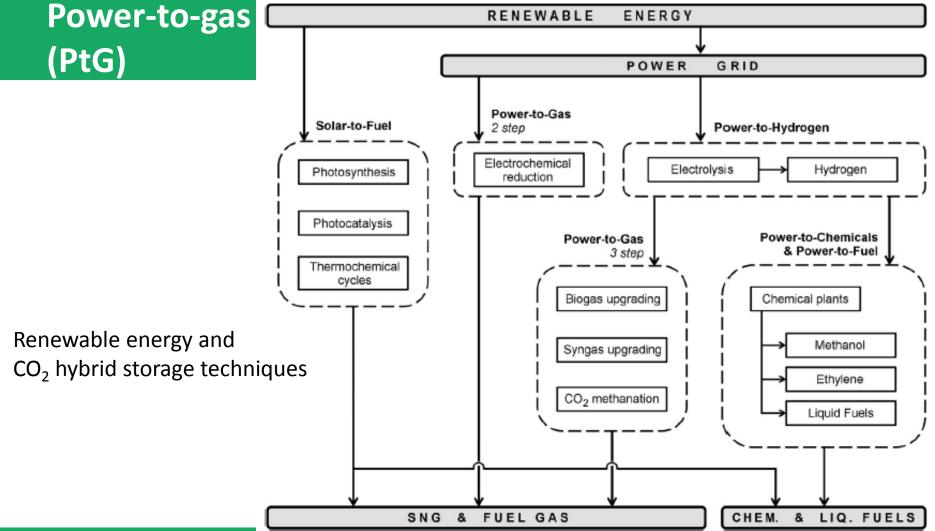

Strategic Research and Innovation Agenda (ETIp, EERA Bioenergy)

Major role for gasification value chains in agreement with SET pl.


Freie Universität Bozen Libera Università di Bolzano Free University of Bolzano

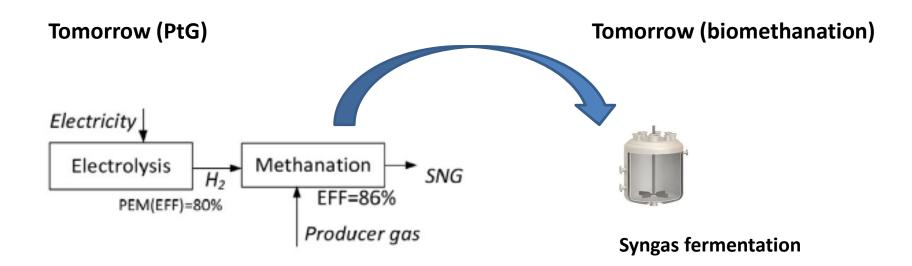
Polygeneration

Saric et al., Journal of CO₂ Utilization, 20 (2017) 81-90 Tomorrow (... almost today)



Sabatier reaction $CO_2 + 4H_2 \Leftrightarrow CH_4 + 2H_2O$ $\Delta H = -164.9 \text{ kJ/mol}$

unibz



M. Bailera et al. Renewable and Sustainable Energy Reviews 69 (2017) 292-312

Power-to-gas (PtG) and gasification

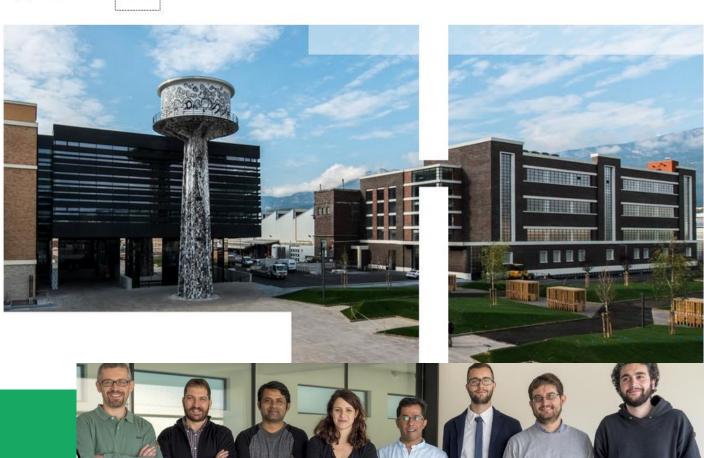
Saric et al., Journal of CO₂ Utilization, 20 (2017) 81-90

Menin et al. (2019)

Remarks: main directions for gasification

- Increase fuel flexibility [use of low-cost feedstock]
- Use char as co-product [(!) legislative framework]
- Co-production of fuels/chemicals/materials [poly-generation]
- Combining thermochemical and biochemical processes
- **Optimization of resource efficiency** [wind, solar, hydro]

Thank you very much for your attention! Visit us at https://bnb.groups.unibz.it


Staff

Equipments -

Research areas

unibz

