Renewable Natural Gas from Biomass Gasification via Fluidized-Bed Methanation

Robert Cattolica, Reinhard Seiser, and Tinku Baidya

Department of Mechanical and Aerospace Engineering UC San Diego, La Jolla, CA 92093, USA

Michael Long

Department of Biological and Agricultural Engineering, UC Davis, Davis, CA 95816, USA

Serge Biollaz

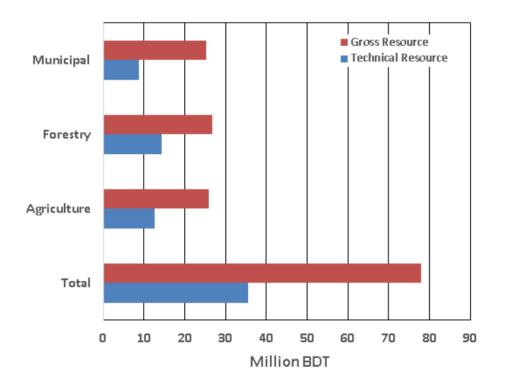
Paul Scherrer Institut 5232 Villigen, Switzerland

Matthew Summers

West Biofuels LLC, Woodland, CA 95776, USA

> tcbiomass*plus*2019 Chicago, Illinois

- The environment for the production of RNG in California
- Research to improve the technology for the production of RNG
- Economics of RNG commercialization



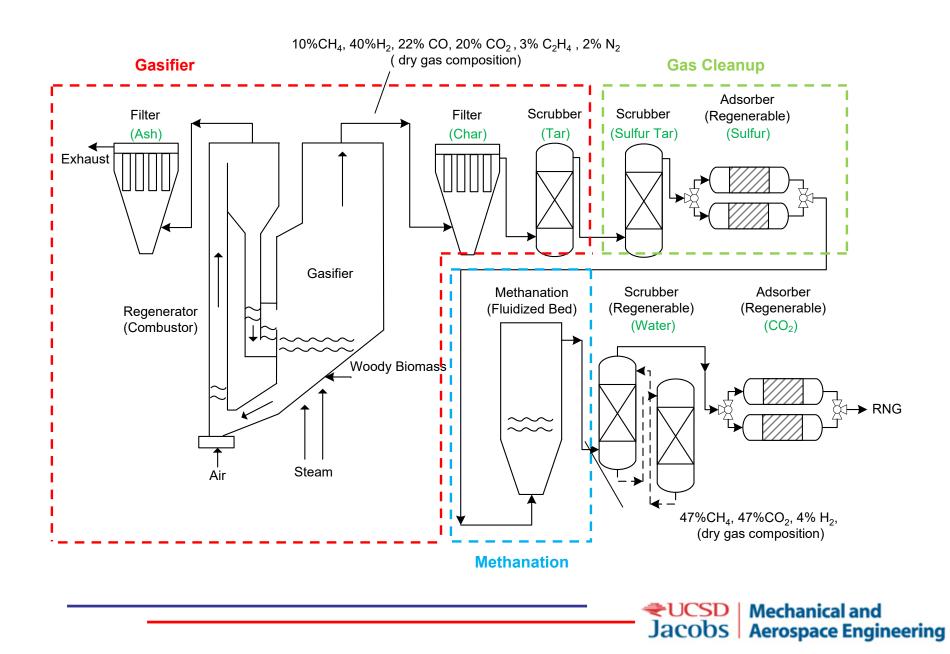
California Green House Gas Policy related to RNG

AB 32 The Global Warming Solutions Act of 2006				
A comprehensive program to reduce greenhouse gas (GHG) emissions in California				
Governor's executive order S-3-05 (6/2005)				
2020 - reduce GHG emissions to 1990 levels (429 MMTCO2e/yr)				
2050 - reduce GHG emissions to <80% 1990 levels (86 MMTCO2e/yr)				
Governor's executive B-30-15 (4/2015) and SB 32 (9/2017)				
2030 - reduce GHG emissions to <40 % 1990 levels (258 MMTCO2e/yr)				
Governor's executive B-55-18 (9/2018)				
2045 - state wide carbon neutrality (0 MMTCO2e/yr)				
California Renewable Portfolio Standard (RPS)				
2020 - 33% renewable power				
2030 - 50% renewable power				
2045 - 100% renewable power – eliminates natural gas from power (44% in 2018)				
California Low Carbon Fuel Standard (LCFS) (2010 Baseline Gasoline 95.61 gCO2e/MJ)				
2020 - reduce Carbon Intensity 10% below 2010 level (86 gCO2e/MJ)				
2030 - reduce Carbon Intensity 20% below 2010 level (76.5 gCO2e/MJ)				
(Natural Gas 68 gCO2e/MJ) (RNG 15 gCO2e/MJ)				

CSD Mechanical and Jacobs Aerospace Engineering

Waste-stream Biomass Resources in California

The difference between technical and gross resources arises from inaccessible or sensitive areas, losses from harvesting, and maintaining soil quality.


Mechanical and

Jacobs | Aerospace Engineering

Source: Williams, R. B., B. M. Jenkins, and S. R. Kaffka (2015). An Assessment of Biomass Resources in California, 2013 Data. CEC PIER Contract 500-11-020, California Biomass Collaborative.

Gross annual biomass production in California and sustainable technical production. Total sustainable: 36 million BDT, 500 trillion BTUs, reduction of 26 MMT CO_2e .

Research on the Technology for the Production of RNG

Woodland, CA

~1 MW_{fuel} Ceramic bed material

Research Pilot Plant

CHP

- Dual-Fluidized Bed Gasifier (FICFB Design from TU Vienna/Güssing)
- Fluidized-bed material in Europe Olivine sand (Mg,Fe,SiO4) trace Ni and Cr contaminates ash High attrition replaced weekly
- Fluidized bed material Woodland 400 micron dia. alumina ceramic.
- Indirectly heated, air-blown, ambient-pressure design.
- Low nitrogen producer-gas, acceptable tar levels.
- Good gas composition for chemical synthesis: 40% H₂, 10% CH₄, 22% CO, 20% CO₂, 3% C₂H₄, 2% N₂, and H₂/CO= 1.82
- Cold-gas efficiency > 70%

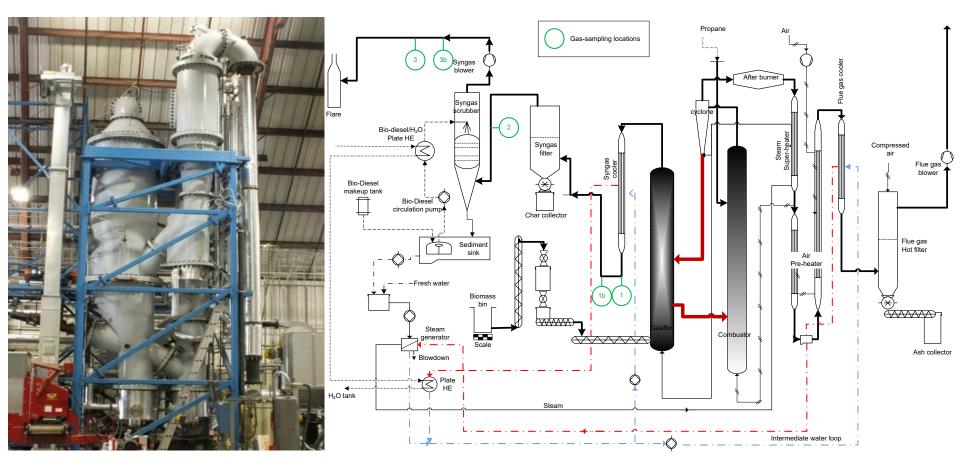
Gussing, Austria ~8 MW_{fuel}

CHP

Senden, Germany

CHP

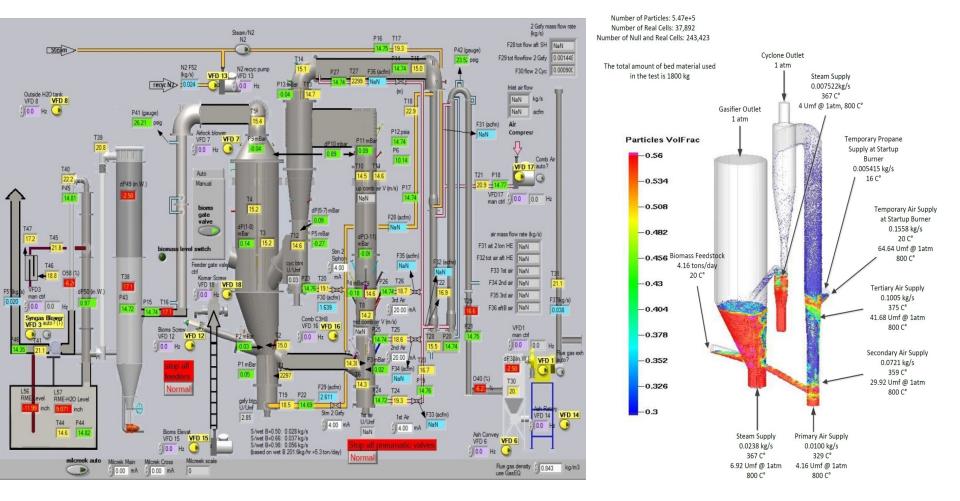
Gothenburg, Sweden ~32 MW_{fuel}



CHP...Combined Heat and Power, RNG...Renewable Natural Gas

CSD Mechanical and Jacobs Aerospace Engineering

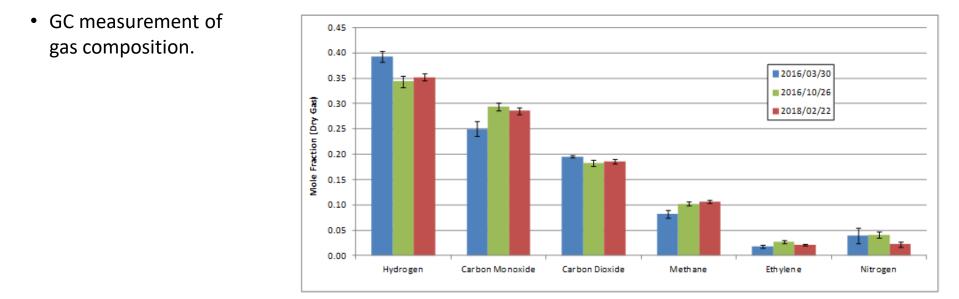
West Biofuels FICFB Pilot Plant 1MW_{fuel}, 6 tons/day


Uses heat recovery for steam generation

California Energy Commission Report: CEC-500-2016-035," Demonstration of Advanced Biomass Combined Heat and Power Systems in the Agricultural Processing Sector," M.D. Summers, C. Liao, M. Hart, R. Cattolica, R. Seiser, and B. Jenkins, June 2015.

UCSD | Mechanical and

Jacobs Aerospace Engineering

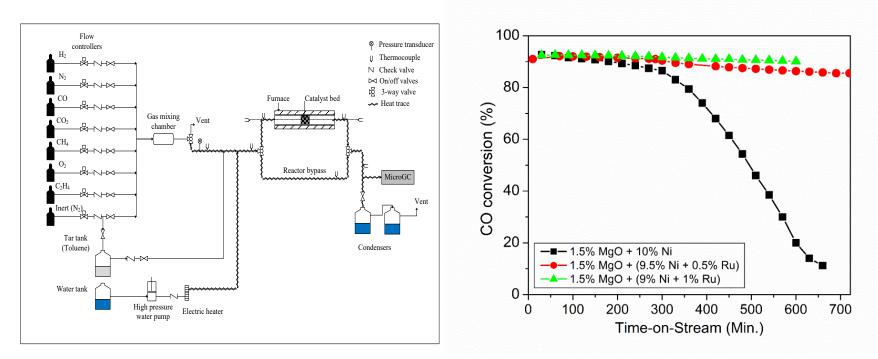

Integrated Biomass Gasification Plant with extensive distribution of sensors (52 temperature, 38 pressure, and 16 flow measurements)

Multiphase Particle-in-Cell Method (MP-PIC) Barracuda Code – CPFD software, LLC. *

> Mechanical and Jacobs | Aerospace Engineering

₹UCSD |

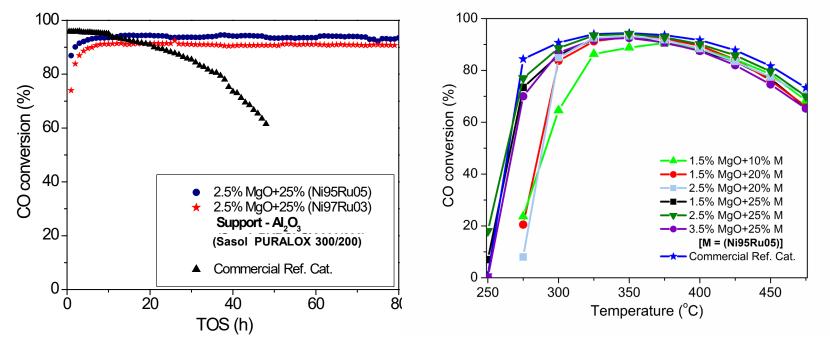
*Hui Liu, Robert J. Cattolica, Reinhard Seiser, and Chang-hsien Liao, "Three-dimensional full-loop simulation of a dual fluidized-bed gasifier," Applied Energy, 160, 2015, 489-501.



• Tar content from European tar protocol Biodiesel Scrubber (RME) - before 11.8 g/Nm³ after 0.33 g/Nm³

Methanation Catalyst Development

- Standard Ni-Mg methanation catalyst requires $H_2/CO = 3$ for stable performance in fixed bed.
- Fluidized-bed methanation can operate at lower H_2/CO ratios due to catalyst circulation.
- Fixed-bed flow reactor study of Ni-Mg-Ru methanation catalyst at $H_2/CO = 1.82$
- Catalyst support CoorsTek AD90 : ~200 micron Alumina, ~4 m²/g

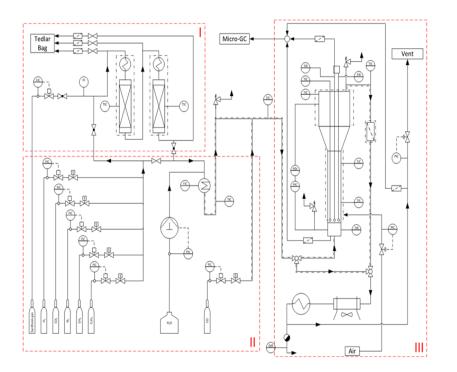

Fixed-bed flow reactor for catalyst development

Time-on-Stream for methanation activity with 40% $\rm H_2$ 22% CO, 38% $\rm N_2$ gas mixture with Ni-Mg and Ni-Mg-Ru catalysts at 425 °C ; GHSV - 96000 cc $\rm g_{cat}^{-1} \, h^{-1}$

UCSD | Mechanical and Jacobs | Aerospace Engineering

Methanation Catalyst Development

- New Ni-Mg-Ru catalyst developed at UCSD prevents deactivation at low ratio $H_2/CO= 1.82$
- Catalyst support Sasol PURALOX : ~300 micron Alumina, >100 m²/g
- High surface area catalyst support allows for increase catalyst loading and resulting increase in activity at a lower operating temperature.
- Time on stream catalyst performance at 325 C and 1 atm on producer gas (40% H₂, 8% CH₄, 22% CO, 22% CO₂, 8% N₂)

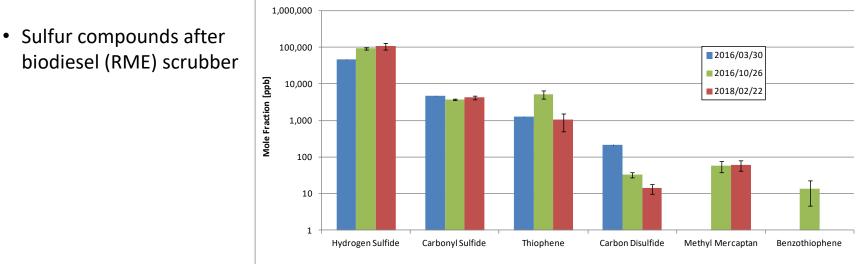


Time-on-Stream for CO conversion activity with producer gas for Ni-Mg-Ru catalysts and ref. catalyst at 325 C ; GHSV - 96000 cc g^{-1} h^{-1}

CO conversion in producer gas with Ni-Mg-Ru catalyst on Al_2O_3 (SASOL PURALOX 300/200) and ref. catalyst from 250 to 475°C; GHSV = 96,000 cc h⁻¹g⁻¹

UCSD | Mechanical and Jacobs | Aerospace Engineering

Fluidized-Bed Methanation Experiment for Evaluating Sulfur Removal and Catalysts


Mechanical and

Jacobs | Aerospace Engineering

I sulfur adsorbent , II gas source, III Fluidized-bed methanation reactor.

- Composition profiles throughout the fluidized bed
- Operational parameters studies on: U/U_{mf} , H_2/CO ratio, steam addition, temperature, and pressure
- Catalyst stability, activity, and regeneration
- Sulfur removal with adsorbents in one or two stages before methanation.

Sulfur Compounds in Gasifier Operation

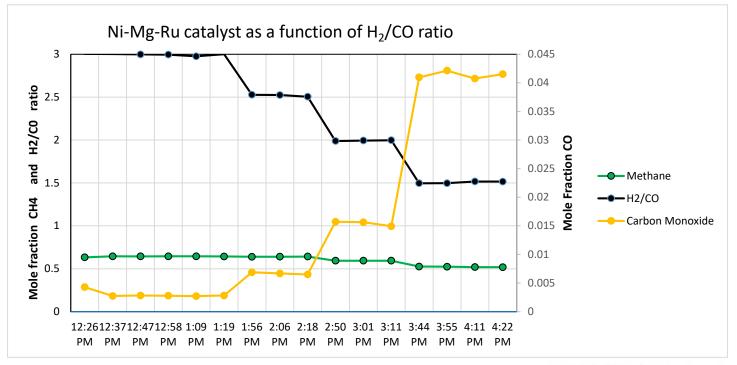
• Sulfur Clean Up

Sulfur removal using solid adsorbents*

- Evaluated 7 adsorbents.
- Tested for adsorption of sulfur compounds. Principally carbonyl sulfide (COS) and thiophene in the presence of benzene.

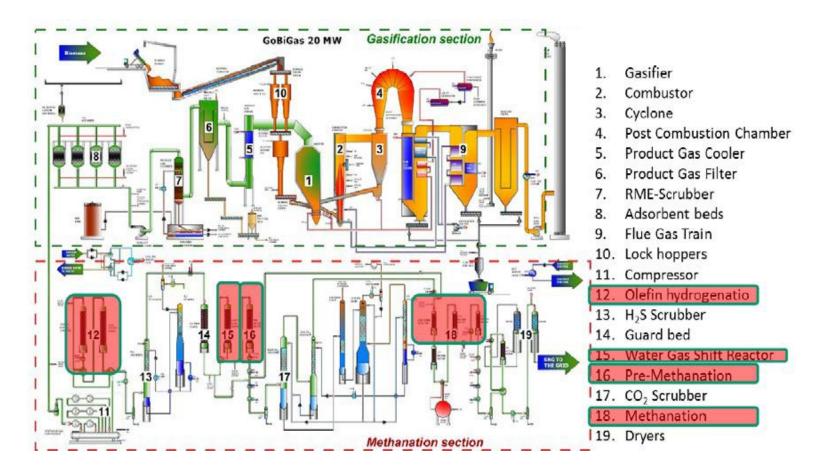
*California Energy Commission Report: "Renewable Natural Gas Production from Woody Biomass via Gasification and Fluidized-Bed Methanation," UC San Diego, R. Seiser, R. Cattolica, and M. Long, April 2019.

Mechanical and


Jacobs Aerospace Engineering

Catalyst Performance in Fluidized-Bed Methanation

- Fixed-Bed methanation catalyst requires $H_2/CO = 3$ ($H_2=75\%$ CO = 25%)
- Fluidized-bed methanation with Ni-Mg-Ru catalyst is stable at $H_2/CO = 1.5$ ($H_2=60\%$ CO = 40\%)


Fluidized-Bed Reactor Methanation Experiments with H_2 and CO using Ni-Mg-Ru (9.5%, 1.5%, 0.5%)

- Catalyst support: CoorsTek AD90, alumina, ~200 micron, ~4 m²/g
- Experiments conducted at a temperature of 380 C, 1.3 atm, U/U_{mf} = 4

CSD | Mechanical and Jacobs | Aerospace Engineering

GoBiGas plant (32 MW_{fuel}/20MW_{RNG}/160 tons biomass/day), Gothenberg, Sweden

Fluidized-bed methanation eliminates three processes steps: Olefin hydrogenation (12), Water Gas Shift (15), Pre-methanation (16) and reduces Methanation reaactor (18) from 3 to 1.

₹UCSD |

Mechanical and Jacobs | Aerospace Engineering

Economics of RNG Production (100 $MW_{th}/60 MW_{RNG}/500 MT/day$)

RNG Production Cost*

Capital Cost	\$166 M	
Debt	60%	
Debt Interest	4%	
Equity	40%	
ROI Equity	10%	
Lifetime	20	
Levelized Cost RNG	\$26.42	

RNG Revenue in Transportation Market (fossil fuel replacement)

	Average 2018	August 2019
Henry Hub Natural Gas (\$/mmBTU)	\$3.17	\$2.22
(\$/gal gasoline equivalent)	\$0.36	\$0.26
California LCFS (\$/MT CO2e)	\$155	\$190
For RNG (\$/mmBTU)	\$13.08	\$16.0 4
Federal D3 RINS (\$/gal Ethanol)	\$2.34	\$0.70
For RNG (\$/mmBTU)	\$27.43	\$8.21
Total RNG Revenue (\$/mmBTU)	\$43.68	\$26.47

*Black & Veatch study in California Energy Commission Report:

"Renewable Natural Gas Production from Woody Biomass via Gasification and Fluidized-Bed Methanation," UC San Diego, R. Seiser, R. Cattolica, and M. Long, April 2019.

Acknowledgement

Funding:

Project Partners:

CSD Mechanical and Jacobs Aerospace Engineering