

What's going on Underground?

GTI/ CSU CH₄ Connections, 2019

Kate Smits, PhD, P.E.

Associate Professor Department of Civil Engineering The University of Texas at Arlington

Acknowledgements:

Conceptualization

Underground pipeline leakage results in gas buildup and migration though soil and ultimately its release into the air or a substructure - can be catastrophic to environment, health, safety, and public trust

Conceptualization

It's complex ...there's 'too much' going on

Leakage behavior

Environmental conditions

- Meteorology (e.g. wind, stability, cloud cover, recirculation)
- Subsurface conditions (e.g. heterogeneity and soil moisture)

Thermodynamic, transport & chemical properties of CH_4 and other fluids

To date, there is no standardized protocol available for considering these factors and how to account for such variables in data analysis

Added complexity linked to detection

Partitioning of methane emissions

JH.

Production- 145 Mt

Source identification (multitude of sources and colocation of multiple source types)

Representativeness of measurements (sample size, temporal and spatial coverage)

ረጉ

CH₄

Landfills- 103 Mt

5

Goal:

Understand conditions and mechanisms affecting gas migration from pipeline leakage

Account for such factors in our decision making

-- Better predictions of the conditions that cause gas migration will support a more efficient response to leaks

CSU Energy Institute's METEC Test Site – Pipeline test bed used for experimentation

Subsurface CH₄ Transport

Subsurface methane profiles - effect of soil layering

Porosity $(cm^3cm^{-3}) = 0.33$ Permeability $(m^2) = 1.0 \ge 10^{-10}$ $\begin{array}{l} Porosity \; (\mbox{cm}^{\mbox{-}3)} \;\; = 0.33 \\ Permeability \; (\mbox{m}^2) \sim 4.0 \; x \; 10^{-10} \end{array}$

Courtesy of shutterstock.com, image ID: 681319207

Experimental Plan

Free flow Low temperature (20-24°C) High temperature (35-38°C) Wind speeds (0, 0.5, 2.0 m/s)

Porous media Near dry (θ = ~10%) Unsaturated (drained to -30 cm H₂O)

Subsurface methane profiles - effect of soil layering

Symbol	Temp/ °C	Velocity/ms ⁻¹	
-	22	0.5	
-	22	2.0	

 The presence of coarse-textured layer affects subsurface methane migration
 Layered systems had lower concentrations w/ steeper gradients
 Improved advective mixing & migration w/i coarse textured layer
 Near surface concentrations for both systems comparable

> Deepagoda *et al.*, 2016, J. Greenhouse Gas Con. Deepagoda *et al.*, 2016, Vadose Zone J.

Subsurface methane profiles – effect of soil layering

- Gas will move upward through soil when
 - there is vertical permeability available <u>or</u>
 - the capillary entry pressure of the overlying layer is exceeded
- Gas can migrate into high permeability zones and pool under low permeability inclusions due to capillary barrier effects (very high entry pressures)
 - Note: in the presence of microbes, this could increase the pressure . . . microbially mediated pressure increases

Permeability

Decreases with the square of the pore radius

- -- small reduction in pore size (e.g. due to swelling) has a large effect Direction dependent
- Fluid dependent (viscosity)

Presence of mucilage cyanobacteria (Belnap, 2013)

Porosity and Permeability Ranges for Sediments					
	Porosity	Permeability			
Well-sorted sand or gravel	25-50%	High			
Sand and gravel, mixed, poor sort	20-35%	Medium			
Glacial till	10-20%	Medium			
Silt	35-50%	Low			
Clay	33-60%	Low			
From C.W. Fetter, 1994. Applied Hydrogeology, 3 rd edition.					

Subsurface methane contours – effect of soil moisture

Length (m)

Deepagoda et al., 2017, Greenhouse Gases S&T

Controlled Field Experiments (METEC)

Experimental Objectives

Study Objective:

- "Above-ground detection study" -Understand the above ground concentrations associated with a range of leak rates
- 2. "**Migration extent study**" Understand how leak rate and subsurface conditions affect migration extent (subsurface and surface plume size) that would be measured during Additional Detection
- 3. "**Surface cover study**" Understand how surface cover conditions (impermeable cover, moist soil layers) affect migration extent

Detection Phase Informed:

Initial detection

Additional detection/ Final repair

Additional detection/ Final repair

Experimental Approach

Rural testbed:

3 ft deep pipe Impermeable surface Cityscape coverage 2st deep pipt testbed: 3 ft deep pipe

Evaluate above-ground, surface, and subsurface underground leak methane concentrations

Above-ground measurements (Picarro)

measurements

Surface

(Gas Rover)

Subsurface measurements (GCMS)

Simulate

Surface and Subsurface Concentration Distributions

*Black dots indicate subsurface sampling locations, and the asterisk indicates the location just above the leak.

Surface (exp 1) : Mean surface concentrations dropped from 2000 ppmv to < 100 ppmv b/t plume's center and 3 m along the trench

Subsurface (exp 1 & 2) : Extent of plume mimicked surface extent

Little to no effect of wind on subsurface concentrations <u>for this</u> <u>specific soil</u>

Ulrich et al., 2019, ESTL

Subsurface Methane Plumes

Elevated subsurface concentrations

bed:

Above-ground concentrations

Above-ground concentration fluctuations:

- Up to 100 ppm for
 0.5 kg/hr leak
- Up to 10 ppm for 0.13 kg/hr leak

Substantial dissipation in first 10 cm above ground at low wind conditions (<2 m/s)

*~80% urban leaks < 0.1 kg/hr

Ulrich et al., 2019, ESTL

Implications of detection duration & data averaging techniques on concentration estimates

- Detection duration and data averaging techniques have an impact on concentration estimates
- Variable temporal nature of gas and the potential for confusion when sampling gas at a single point in time and space
- Measurements are highly variable at a single sampling location, such that instruments with response times of the order of 1-2 s have an advantage when detecting low concentrations that appear in narrow bursts

Conclusions & Future Work

- Numerical models linked with controlled experiments assist in understanding behavior
- Many open questions about gas migration and accurate quantification of leaks