Characterizing methane emissions using remote sensing

Andrew Thorpe^{1*}, Riley Duren^{2,1}, Christian Frankenberg^{3,1}, Daniel Cusworth¹, Robert Green¹, Brian Bue¹, David R. Thompson¹, Chip Miller, et al.

¹Jet Propulsion Laboratory, California Institute of Technology

²University of Arizona

³California Institute of Technology

*Andrew.K.Thorpe@jpl.nasa.gov

Multi-tiered observations

Multi-tiered observations

Next Generation Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-NG)

California Methane Survey

Reducing emissions at a gas storage facility

Oct. 26 2017, 19:21:42 UTC

Oct. 26 2017, 19:37:33 UTC

(Thorpe et al., submitted)

Reducing emissions at a gas storage facility

Google Earth, Oct. 2 2016

Oct. 26 2017, 19:45:12 UTC

Sept. 15 2016, 18:52:10 UTC

Sept. 15 2016, 19:09:43 UTC

Sept. 15 2016, 18:52:10 UTC

Sept. 15 2016, 19:09:43 UTC

Google Earth, Feb. 2 2016

Sept. 15 2016, 18:52:10 UTC

Sept. 15 2016, 19:09:43 UTC

Sept. 25 2016, 19:34:34 UTC

California Methane Survey results

NASA

- 1) Multiple revisits of facilities permitted assessment of persistence:
 - Oil & gas, dairy: 20-35% (mean) persistence.
 - Landfills: 100% persistence.
- 2) Emissions were calculated for 564 methane point sources.
- 3) Estimated emissions from methane point sources in California:
 - 0.618 TgCH₄ yr⁻¹ (95% confidence 0.523-0.725).
 - Equivalent to 34-46% of 2016 methane inventory.
- 4) Super-emitter activity occurs in every surveyed sector (10% of point sources contributed ~60% of point source emissions).

AVIRIS-NG CO₂ and CH₄ (complete carbon footprint)

(Cusworth et al., in prep)

JPL technology overview for point source mapping

Potential for spaceborne imaging spectrometers

Aliso Canyon blowout Hyperion (10 nm): 1/1/16, 16:39 UTC

(Thompson et al., 2016)

Atmospheric Measurement Techniques Discussions

Potential of next-generation imaging spectrometers to detect and quantify methane point sources from space

Daniel H. Cusworth^{D1,3}, Daniel J. Jacob¹, Daniel J. Varon^{D1}, Christopher Chan Miller², Xiong Liu², Kelly Chance^{D²}, Andrew K. Thorpe^{D³}, Riley M. Duren^{D³}, Charles E. Miller³, David R. Thompson \mathbb{D}^3 , Christian Frankenberg $\mathbb{D}^{3,4}$, Luis Guanter⁵,

and Cynthia A. Randles⁶

¹School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA ²Atomic and Molecular Physics Division, Harvard Smithsonian Center for Astrophysics, Cambridge, MA, USA ³Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA ⁴Division of Geology and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA

⁵Centro de Tecnologías Físicas, Universitat Politècnica de València, Camí de Vera s/n, 46022 València, Spain ⁶ExxonMobil Research and Engineering Company, Annandale, NJ, USA

Potential for spaceborne imaging spectrometers (public sector)

• While not designed for this purpose, instruments will have methane sensitivity

Modified from Rast & Painter (2019)

Key takeaways

- Imaging spectrometer technology and science is mature
 - Four years of AVIRIS-NG methane flight campaigns
 - A decade of scientific publications
- Super emitters across all sectors offer great potential for mitigation
- Intermittent nature of emissions requires frequent observations (satellites)
- Characterizing methane emissions with imaging spectrometers complements and offers follow-up to high emitting areas detected by global mappers