Incorporating New Technology Into Emissions Mitigation Policy

Arvind P Ravikumar

Assistant Professor, Harrisburg University Fellow, Payne Institute at Mines

@arvindpawan1

©Daniel Roda-Stuart

Introduction – Methane Emissions

- Methane emissions from oil and gas activity is a significant source of GHG emissions in US and Canada
- Reducing methane has multiple co-benefits, in addition to climate impact
 - Improve air quality (precursor to low-level ozone)
 - Reduce product waste
 - Social license to operate near population centers
- Recent studies show significant higher emissions compared to EPA GHGI
 - 2.3% (Brandt et al. 2018) vs. 1.7% (GHG Inventory)
 - Significant upward revision in upstream production 7.6 vs. 3.5 Tg/y
 - Aggregation of facility-level estimates

Policy Approaches to Emissions Mitigation

- Most active jurisdictions (CO, Canada) have prescriptive policies
 - Venting and Flaring: Annual limits verified through activity data and production figures
 - Fugitive Emissions: Periodic leak detection and repair (LDAR) surveys
- Managing fugitive emissions or leaks
 - LDAR survey typically conducted with infrared camera technology
 - Survey frequency varies from 1/year to 12/year
- Drawbacks of camera-based surveys
 - Component-level measurements are time consuming
 - Highly susceptible to weather conditions

New Technologies and Platforms

- Truck-, drone-, and plane-based detection systems have been developed
 - Truck- and plane-based pilot studies reported in literature
- Strong business and investor interest in testing new technologies

- Potential to provide more cost-effective mitigation
 - Colorado and Alberta actively studying ways to incorporate new tech

Design Space for New Technology

Fox et al. In review (2018)

Key Problem – Demonstrating Equivalence

- Need to demonstrate mitigation achieved using new technologies will be equivalent to existing approaches
 - Depends on how effective existing camera-based surveys are
- Recent work controlled release experiments with cameras at METEC
 - OGI leak detection limits 10x higher than prior lab estimates
- More recent field-work with truck-based measurements in US & Canada
 - Provided facility-level instead of component-level data, but
 - Limited 'ground truth' measurements → direct comparisons difficult

Different Types of Equivalence

- Detection Equivalence: Technology-specific
 - Minimum detection threshold, speed, false positive rate, etc.
 - Can be identified by blind-tests (MONITOR program, Stanford/EDF Mobile Monitoring Challenge)
- **Mitigation Equivalence:** Technology + policy
 - Compare effective mitigation under specific survey protocols
 - But cannot be easily experimentally verified

Equivalence = Technology Validation + Modeling Framework

MONITOR testing, Stanford/EDF MMC, limited field tests, etc. FEAST-like modeling to determine long-term mitigation potential

Stanford/EDF Mobile Monitoring Challenge

- Test mobile approaches to leak detection
- Platforms drones, trucks, and planes
- 28 applications received for the MMC call
 - 5 countries US, Canada, Netherlands, UK, and Mexico
 - 12 technologies; 10 ultimately participated

Visit: methane.stanford.edu

Test Locations

- 2 test sites METEC (Fort Collins, CO), Northern CA gas yard (Knights) Landing, CA)
- Technologies split-up by detection sensitivities (based on detailed) individual discussions with each participant)

METEC (Fort Collins, CO)

Test Parameters

Parameter	Description
Location identification	(a) Equipment level (both type and number), (b) Component level
Binary Yes/No detection	(a) True / False positive percentage (b) True / False negative percentage
Quantification accuracy	Parity chart of controlled leak tests
Ability to resolve leaks	(a) Small vs. large leaks close-by (b) Multiple similar leaks close-by (c) Multiple leaks on same pad

METEC Site-Layout and Field Testing

- One technology per pad (rotated periodically)
- Controlled releases were decided 'on-the-fly' based on wind speed and direction to avoid interference

Example Technology Testing

General Insights

- Don't believe everything a brochure says (*not their fault*)
- Most sensors efficient at detecting methane (point measurements), but...
 - Wide variety in algorithms that convert raw data to actionable info
- Quantification is a very difficult problem
 - 2 5x of actual leak rate is *very good* performance
 - Expectations should be at 'order-of-magnitude' level estimates
- No 'unicorn' solutions
 - Most new sensors will serve niche applications / industry segment
- Clearly distinguish 'screening' tech and 'OGI-replacement' tech

Results – Technology A

- Best-in-class performance (detection & quantification)
- Real time data including quantification (initial estimate)
- "Raw data" no processing for winds or potential interference
 - Cross-terms affected by external weather conditions

Leak identification (overall)

Total n	63			
Numbe	41			
		Yes	No	Total
Leak		59	4	63
No Lea	āk	0	41	41

Locational Accuracy

Total number of leaks	63
Number detected	59
Number location identified	50
% location identified correctly	0.85

	Yes	No
Leak	True +	False -
No Leak	False +	True -
	0.94	0.06
	0.00	1.00

Technology A - Quantification

- Most leak estimates within 2x of actual leak rates
- (Quantification, in general, is very difficult. Within 2x is exceptional performance for sensors that don't directly measure flow rates)

Technology B – Detection

- Real time data on detection but not quantification
- Understand the importance of detection probabilities and limits

Leak identification (overall)

Total n	57			
Numb		45		
		Yes	No	Total
Leak		39	18	57
No Lea	ak	32	13	45

	Yes	No
Leak	True +	False -
No Leak	False +	True -
	0.68	0.32
	0.71	0.29

Locational Accuracy

Total number of leaks	57
Number detected	39
Number location identified	19
% location identified correctly	0.49

Technology B – Leak Detection Probability

- Leak detection probability proxy by histogram of leaks detected within a given range
- Median threshold ~ 2 scfh with high false positive rate (Note: company specified 'definite detection' is 6 scfh)

Technology B – Weather Considerations

 Need to consider interference between pads (can increase false positive rate) and effect of wind speed on detection capability

Technology B – Weather Considerations

 Need to consider interference between pads (can increase false positive rate) and effect of wind speed on detection capability

Technology B – After Eliminating Weather Uncertainty

- 'Cone of interference' (40 deg) to determine influence of multiple leaks
- Mild vs. Strong interference based on wind speed parameters
 - Mild \rightarrow < 2 m/s \rightarrow no interference
 - Strong \rightarrow > 2 m/s \rightarrow cone of interference

	All leaks			Mild interference			Strong interference			
	Yes	No			Yes	No			Yes	No
Leak	True +	False -		Leak	True +	False -		Leak	True +	False -
No Leak	False +	True -	\longrightarrow	No Leak	False +	True -	\longrightarrow	No Leak	False +	True -
	0.68	0.32			0.68	0.32			0.65	0.35
	0.71	0.29			0.65	0.35			0.45	0.55

Field Campaign to Assess Policy Effectiveness (FEMP-EA)

- 50 x 50 km area NW of Calgary
- ~ 200 sites selected for leak detection and repair surveys
- 3 survey schedules (1, 2 or 3 times/year) and 1 control group
- Goals: Determine time evolution of emissions mitigation – 'sunset policy'

Field Trials of New Technology (Alt-FEMP)

- Simultaneous testing of new platforms (trucks, planes) along with OGI-based ground LDAR team
- ~1000 sites (Nov '18 Sep '19)
- Study objectives
 - determine technology equivalence through direct field measurements
 - Study effectiveness of screening + confirmation approaches
 - Simulations to confirm mitigation equivalence

Future Work and Conclusions

- New technologies are promising alternatives for cost-effective methane emissions detection, but...
 - Technologies should be parametrized through well-designed control studies and pilot demonstrations
 - Couple data with models to estimate 'equivalent' emissions reductions and analyze long-term impact
- Policy design should allow for flexibility in mitigation practices
 - Allow for the use of 'screening' technologies
 - Re-think survey frequency rules as applicable to new technology

General Insights

- Don't believe everything a brochure says (*not their fault*)
- Most sensors efficient at detecting methane (point measurements), but...
 - Wide variety in algorithms that convert raw data to actionable info
- Quantification is a very difficult problem
 - 2 5x of actual leak rate is *very good* performance
 - Expectations should be at 'order-of-magnitude' level estimates
- No 'unicorn' solutions
 - Most new sensors will serve niche applications / industry segment
- Clearly distinguish 'screening' tech and 'OGI-replacement' tech